Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Event-based structured light (SL) systems leverage bio-inspired event cameras, which are renowned for their low latency and high dynamics, to drive progress in high-speed structured light systems. However, existing event-based structured light methods concentrate on the independent construction of either time-domain or space-domain features for stereo matching, ignoring the spatio-temporal consistency towards depth. In this work, we build an event-based SL system that consists of a laser point projector and an event camera, and we devise a spatial-temporal coding strategy that realizes depth encoding in dual domains through a single shot. To exploit the spatio-temporal synergy, we further present STEM, a novel Spatio-Temporal Enhanced Matching approach for 3D reconstruction. STEM is comprised of two parts, the spatio-temporal enhancing (STE) algorithm and the spatio-temporal matching (STM) algorithm. Specifically, STE integrates the dual-domain information to increase the saliency of the temporal coding, providing a more robust basis for matching. STM is a stereo matching algorithm explicitly tailored to the unique characteristics of event data modality, which computes the disparity via a meticulously designed hybrid cost function. Experimental results demonstrate the superior performance of our proposed method, achieving a reconstruction rate of 16 fps and a low root mean square error of 0.56 mm at a distance of 0.72 m.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.507688 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!