A new method enabling to provide an on-demand flat-top wideband orbital angular momentum (OAM) mode converter is proposed and experimentally demonstrated, which is based on utilization of a cladding-etched helical long-period fiber grating (CEHLPG). By appropriately selecting the grating period and precisely controlling the diameter of the CEHLPG in-situ, both the radial order and central wavelength of the flat-top band for the generated OAM mode can be flexibly tailored according to specific requirements. As typical examples, the first azimuthal order OAM modes with a flat-top bandwidth of 95 nm at -20 dB, a central operating wavelength of ∼1500 nm, and the radial-orders of 9, 8, 5, and 2, respectively, have been demonstrated consecutively. The proposed method provides an excellent flexibility and robustness in controlling both the radial order and the central wavelength of the resulting flat-top wideband OAM mode conversion, which may support a variety of practical optical vortex applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.505872 | DOI Listing |
ACS Photonics
December 2024
Graduate School and Faculty of Information Science and Electrical Engineering, Kyushu University, 744 Motooka Nishi-ku, Fukuoka, 819-0395, Japan.
Whispering-gallery mode (WGM) resonators, renowned for their high Q-factors and narrow line widths, are widely utilized in integrated photonics. Integrating diffraction gratings onto WGM cavities has gained significant attention because these gratings function as azimuthal refractive index modulators, enabling single-mode WGM emissions and supporting beams with orbital angular momentum (OAM). The introduction of curved grating structures facilitates guided mode resonances by coupling high-order diffracted waves with leaking modes from the waveguide.
View Article and Find Full Text PDFSci Adv
December 2024
Institutionen för Systemteknik, Linköpings Universitet, 581 83 Linköping, Sweden.
Wave-particle duality is one of the most notable and counterintuitive features of quantum mechanics, illustrating that two incompatible observables cannot be measured simultaneously with arbitrary precision. In this work, we experimentally demonstrate the equivalence of wave-particle duality and entropic uncertainty relations using orbital angular momentum (OAM) states of light. Our experiment uses an innovative and reconfigurable platform composed of few-mode optical fibers and photonic lanterns, showcasing the versatility of this technology for quantum information processing.
View Article and Find Full Text PDFNanophotonics
July 2024
Institute of Modern Optics, Nankai University, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Tianjin 300350, China.
We propose and demonstrate the simulation and fabrication of an all-fiber orbital angular momentum (OAM) mode converter capable of generating first- to fourth-order modes simultaneously, which is realized by inscribing a cascaded preset-twist long-period fiber grating (CPT-LPFG) in a six-mode fiber utilizing a CO laser. A new segmented Runge-Kutta method is proposed to simulate the preset-twist long-period fiber gratings. By calculating the twist angle and relative coupling coefficient for each pitch and then solving the coupled mode equations utilizing the Runge-Kutta algorithm.
View Article and Find Full Text PDFSci Rep
December 2024
School of Information and Communications Engineering, Xi'an Jiaotong University, Xi'an, 710049, China.
Adv Sci (Weinh)
November 2024
National Laboratory of Solid State Microstructures and Department of Materials Science and Engineering, Nanjing University, Nanjing, 210093, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!