Images captured in fog are often affected by scattering. Due to the absorption and scattering of light by aerosols and water droplets, the image quality will be seriously degraded. The specific manifests are brightness decrease, contrast decrease, image blur, and noise increase. In the single-image dehazing method, the image degradation model is essential. In this paper, an effective image degradation model is proposed, in which the hierarchical deconvolution strategy based on transmission map segmentation can effectively improve the accuracy of image restoration. Specifically, the transmission map is obtained by using the dark channel prior (DCP) method, then the transmission histogram is fitted. The next step is to divide the image region according to the fitting results. Furthermore, to more accurately recover images of complex objects with a large depth of field, different levels of inverse convolution are adopted for different regions. Finally, the sub-images of different regions are fused to get the dehazing image. We tested the proposed method using synthetic fog images and natural fog images respectively. The proposed method is compared with eight advanced image dehazing methods on quantitative rating indexes such as peak signal-to-noise ratio (PSNR), structural similarity (SSIM), image entropy, natural image quality evaluator (NIQE), and blind/referenceless image spatial quality evaluator (BRISQUE). Both subjective and objective evaluations show that the proposed method achieves competitive results.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.510100DOI Listing

Publication Analysis

Top Keywords

transmission map
12
proposed method
12
image
11
hierarchical deconvolution
8
dehazing method
8
based transmission
8
map segmentation
8
image quality
8
image degradation
8
degradation model
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!