Zinc selenide nanoparticles (ZnSe) are semiconductor metals of zinc and selenium. ZnSe NPs are advantageous for biomedical and bio-imaging applications due to their low toxicity. ZnSe NPs can be used as a therapeutic agent by synthesizing those using biologically safe methods. As a novel facet of these NPs, plant-based ZnSe NPs were fabricated from an aqueous extract of Rosmarinus officinalis L. (RO extract). Physiochemical analyses such as UV-visible and FTIR spectroscopy, SEM-EDX and TEM Imaging, XRD and DLS-Zeta potential analyses confirmed the biological fabrication of RO-ZnSe NPs. Additionally, Ro-ZnSe NPs were investigated for their bioactivity. There was an apparent peak in the UV-visible spectrum at 398 nm to confirm the presence of ZnSe NPs. FTIR analysis confirmed RO-extract participation in ZnSe NPs synthesis by identifying putative functional groups associated with biomolecules. TEM and SEM analyses revealed that RO-ZnSe NPs have spherical shapes in the range of 90-100 nm. According to XRD and EDX analysis, RO-ZnSe NPs had a crystallite size of 42.13 nm and contain Se and Zn (1:2 ratio). These NPs demonstrated approximately 90.6% antioxidant and antibacterial activity against a range of bacterial strains at 100 µg/ml. Antibiofilm activity was greatest against Candida glabrata and Pseudomonas aeruginosa at 100 g/ml. Accordingly, the IC values for anticancer activity against HTB-9, SW742, and HF cell lines were 14.16, 8.03, and 35.35 g/ml, respectively. In light of the multiple applications for ZnSe NPs, our research indicates they may be an excellent option for biological and therapeutic purposes in treating cancers and infections. Therefore, additional research is required to determine their efficacy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10768302 | PMC |
http://dx.doi.org/10.1186/s12906-023-04329-6 | DOI Listing |
Sci Rep
January 2025
Department of Biochemistry, Bahauddin Zakariya University, Multan, 60800, Pakistan.
Liver cancer is globally the most frequent fatal malignancy, and its identification is critical for making clinical decisions about treatment options. Pathological diagnostics and contemporary imaging technologies provide insufficient information for tumor identification. Hydrogen peroxide (HO), an emerging biomarker is a powerful oxidant found in the tumor microenvironment, and stimulates the invasion, proliferation, and metastasis of liver cancer cells.
View Article and Find Full Text PDFInorg Chem
December 2024
Key Laboratory of Physics and Technology for Advanced Batteries, Ministry of Education, College of Physics, Jilin University, Qianjin Street No. 2699, Changchun 130012, China.
ChemSusChem
October 2024
State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia, 750021, P. R. China.
BMC Complement Med Ther
January 2024
Department of Medical Biotechnology, Lorestan University of Medical Sciences, Khorramabad, Iran.
Zinc selenide nanoparticles (ZnSe) are semiconductor metals of zinc and selenium. ZnSe NPs are advantageous for biomedical and bio-imaging applications due to their low toxicity. ZnSe NPs can be used as a therapeutic agent by synthesizing those using biologically safe methods.
View Article and Find Full Text PDFChem Commun (Camb)
September 2023
School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou 510006, China.
In this work, core-shell structured ZnSe@NPSC nanorods were prepared with a N, P, S hetero-doped carbon shell. The design of the core-shell structure is conducive to facilitating the transport of electrons and buffering the volume expansion during charge/discharge processes, which is favourable for improving the sodium ion storage properties of ZnSe@NPSC. Therefore, it can deliver capacities of 376.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!