Zinc selenide nanoparticles (ZnSe) are semiconductor metals of zinc and selenium. ZnSe NPs are advantageous for biomedical and bio-imaging applications due to their low toxicity. ZnSe NPs can be used as a therapeutic agent by synthesizing those using biologically safe methods. As a novel facet of these NPs, plant-based ZnSe NPs were fabricated from an aqueous extract of Rosmarinus officinalis L. (RO extract). Physiochemical analyses such as UV-visible and FTIR spectroscopy, SEM-EDX and TEM Imaging, XRD and DLS-Zeta potential analyses confirmed the biological fabrication of RO-ZnSe NPs. Additionally, Ro-ZnSe NPs were investigated for their bioactivity. There was an apparent peak in the UV-visible spectrum at 398 nm to confirm the presence of ZnSe NPs. FTIR analysis confirmed RO-extract participation in ZnSe NPs synthesis by identifying putative functional groups associated with biomolecules. TEM and SEM analyses revealed that RO-ZnSe NPs have spherical shapes in the range of 90-100 nm. According to XRD and EDX analysis, RO-ZnSe NPs had a crystallite size of 42.13 nm and contain Se and Zn (1:2 ratio). These NPs demonstrated approximately 90.6% antioxidant and antibacterial activity against a range of bacterial strains at 100 µg/ml. Antibiofilm activity was greatest against Candida glabrata and Pseudomonas aeruginosa at 100 g/ml. Accordingly, the IC values for anticancer activity against HTB-9, SW742, and HF cell lines were 14.16, 8.03, and 35.35 g/ml, respectively. In light of the multiple applications for ZnSe NPs, our research indicates they may be an excellent option for biological and therapeutic purposes in treating cancers and infections. Therefore, additional research is required to determine their efficacy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10768302PMC
http://dx.doi.org/10.1186/s12906-023-04329-6DOI Listing

Publication Analysis

Top Keywords

znse nps
24
ro-znse nps
16
nps
12
zinc selenide
8
selenide nanoparticles
8
rosmarinus officinalis
8
znse
7
biogenic zinc
4
nanoparticles fabricated
4
fabricated rosmarinus
4

Similar Publications

Liver cancer is globally the most frequent fatal malignancy, and its identification is critical for making clinical decisions about treatment options. Pathological diagnostics and contemporary imaging technologies provide insufficient information for tumor identification. Hydrogen peroxide (HO), an emerging biomarker is a powerful oxidant found in the tumor microenvironment, and stimulates the invasion, proliferation, and metastasis of liver cancer cells.

View Article and Find Full Text PDF

Growth of Ultrathick CuInS Shells for Supersized Core/Shell Nanoparticles.

Inorg Chem

December 2024

Key Laboratory of Physics and Technology for Advanced Batteries, Ministry of Education, College of Physics, Jilin University, Qianjin Street No. 2699, Changchun 130012, China.

Article Synopsis
  • Growth of ultrathick shells on quantum dots (QDs) enhances the properties of nanoparticles (NPs).
  • CuInSe quantum dots were created with a uniform surface, allowing for a superthick shell (∼45 nm) of CuInS to be added, resulting in large core/shell nanostructures (~100 nm).
  • This technique was further applied to create other core/shell configurations, indicating potential for new chemical and physical phenomena in nanomaterials, beneficial for research and commercial applications.
View Article and Find Full Text PDF

Coaxially Bi/ZnO@ZnSe Array Photocathode Enables Highly Efficient CO2 to C1 Conversion via Long-lived High-energy Photoelectrons.

ChemSusChem

October 2024

State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering, School of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, Ningxia, 750021, P. R. China.

Article Synopsis
  • The study focuses on developing effective cathode materials for the photoelectrochemical CO reduction reaction (PEC CO RR) to convert carbon monoxide into valuable products using high-energy photoelectrons.
  • A coaxial ZnO@ZnSe heterostructure was created, enhanced by depositing metallic Bi nanoparticles on its surface, resulting in an efficient Bi/ZnO@ZnSe photocathode.
  • This photocathode design features a large surface area for better mass transfer and captures high-energy photoelectrons effectively, achieving over 88.9% Faradaic efficiency in CO conversion while maintaining stability.
View Article and Find Full Text PDF

Zinc selenide nanoparticles (ZnSe) are semiconductor metals of zinc and selenium. ZnSe NPs are advantageous for biomedical and bio-imaging applications due to their low toxicity. ZnSe NPs can be used as a therapeutic agent by synthesizing those using biologically safe methods.

View Article and Find Full Text PDF

In this work, core-shell structured ZnSe@NPSC nanorods were prepared with a N, P, S hetero-doped carbon shell. The design of the core-shell structure is conducive to facilitating the transport of electrons and buffering the volume expansion during charge/discharge processes, which is favourable for improving the sodium ion storage properties of ZnSe@NPSC. Therefore, it can deliver capacities of 376.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!