Textile effluent carries a range of dyes that may be recalcitrant and resistant to biodegradation. A unique consortium of the Fimbristylis dichotoma and Saccharomyces cerevisiae is exploited for the biodegradation of an azo dye Rubine GFL and actual textile effluent. This consortium enhances the rate of biodegradation of Rubine GFL and actual textile effluent with an excellent rate of biodegradation of 92% for Rubine GFL and 68% for actual textile effluent when compared to the individual one within 96 h. Speedy decolorization of Rubine GFL and actual textile effluent was observed due to the induction of oxido-reductive enzymes of the FD-SC consortium. Along with the significant reduction in the values of COD, BOD, ADMI, TSS, and TDS with 70, 64, 65, 41, and 52%, respectively, in experimental sets treated with FD-SC consortium. The biodegradation of Rubine GFL was confirmed with UV-Vis spectroscopy at the preliminary level, and then, metabolites formed after degradation were detected and identified by FTIR, HPLC, and GC-MS techniques. Also, decolorization of the dye was observed in the sections of the root cortex of Fimbristylis dichotoma. The toxicity of dye and metabolites formed after degradation was assessed by seed germination and bacterial count assay, where increased germination % and bacterial count from 31×10CFUs to 92 × 10 CFUs reflect the nontoxic nature of metabolites. Furthermore, the nontoxic nature of metabolites was confirmed by fish toxicity on Cirrhinus mrigala showed normal structures of fish gills and liver in the groups treated with FD-SC consortium proving the better tactic for biodegradation of dyes and textile effluent.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10123-023-00464-9DOI Listing

Publication Analysis

Top Keywords

textile effluent
24
rubine gfl
20
actual textile
16
gfl actual
12
fd-sc consortium
12
fimbristylis dichotoma
8
rate biodegradation
8
biodegradation rubine
8
treated fd-sc
8
metabolites formed
8

Similar Publications

Article Synopsis
  • Effluent from the textile industry, particularly dye wastewater like malachite green, poses significant environmental risks, leading to increased research into sustainable dye removal methods.
  • A hydrogel composite was developed using black liquor from corncobs and sodium alginate, achieving optimal dye adsorption at a 1:4 weight ratio, with a capacity of 650 mg/g for a dye concentration of 1500 mg/L.
  • Characterization techniques confirmed high dye removal efficiencies (up to 95.54%) for both the black liquor/sodium alginate and alkaline lignin/sodium alginate hydrogels, with the adsorption kinetics fitting the pseudo-second-order model and a strong correlation to the Langmuir isotherm.
View Article and Find Full Text PDF

Biodegradation of azo dyes by Aspergillus flavus and its bioremediation potential using seed germination efficiency.

BMC Microbiol

January 2025

Department of Biological and Geological Sciences, Faculty of Education, Ain Shams University, Cairo, 11341, Egypt.

The worldwide textile industry extensively uses azo dyes, which pose serious health and environmental risks. Effective cleanup is necessary but challenging. Developing bioremediation methods for textile effluents will improve color removal efficiency.

View Article and Find Full Text PDF

Microwave catalytic treatment using magnetically separable CoFeO spinel catalyst for high-rate degradation of malachite green dye.

J Environ Manage

January 2025

Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Madras, Chennai, Tamil Nadu, 600036, India. Electronic address:

The release of toxic chemical dyes from the industrial effluent poses huge challenges for the environmental engineers to treat it. Azo dyes encompass the huge part of textile discharges which are difficult to degrade due to their complex chemical aromatic structures and due to the presence of strong bonds (-N=N-). Thus, the removal of a carcinogenic azo dye (i.

View Article and Find Full Text PDF

The extensive use of azo dyes in textile and pharmaceutical industries pose significant environmental and health risks. This problem requires to be tackled forthwith through a cheap, environmentally friendly and viable approach to mitigate water pollution. In this context, the green synthesis method was used for synthesis of ZnO NPs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!