Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Human diseases are traditionally studied as singular, independent entities, limiting researchers' capacity to view human illnesses as dependent states in a complex, homeostatic system. Here, using time-stamped clinical records of over 151 million unique Americans, we construct a disease representation as points in a continuous, high-dimensional space, where diseases with similar etiology and manifestations lie near one another. We use the UK Biobank cohort, with half a million participants, to perform a genome-wide association study of newly defined human quantitative traits reflecting individuals' health states, corresponding to patient positions in our disease space. We discover 116 genetic associations involving 108 genetic loci and then use ten disease constellations resulting from clustering analysis of diseases in the embedding space, as well as 30 common diseases, to demonstrate that these genetic associations can be used to robustly predict various morbidities.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10766526 | PMC |
http://dx.doi.org/10.1038/s43588-023-00453-y | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!