The rapid emergence of large-scale atlas-level single-cell RNA-seq datasets presents remarkable opportunities for broad and deep biological investigations through integrative analyses. However, harmonizing such datasets requires integration approaches to be not only computationally scalable, but also capable of preserving a wide range of fine-grained cell populations. We have created Portal, a unified framework of adversarial domain translation to learn harmonized representations of datasets. When compared to other state-of-the-art methods, Portal achieves better performance for preserving biological variation during integration, while achieving the integration of millions of cells, in minutes, with low memory consumption. We show that Portal is widely applicable to integrating datasets across different samples, platforms and data types. We also apply Portal to the integration of cross-species datasets with limited shared information among them, elucidating biological insights into the similarities and divergences in the spermatogenesis process among mouse, macaque and human.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s43588-022-00251-y | DOI Listing |
Sensors (Basel)
January 2025
Department of Electrical and Electronic Engineering, Imperial College London, London SW7 2AZ, UK.
A generative adversarial network (GAN) makes it possible to map a data sample from one domain to another one. It has extensively been employed in image-to-image and text-to image translation. We propose an EEG-to-EEG translation model to map the scalp-mounted EEG (scEEG) sensor signals to intracranial EEG (iEEG) sensor signals recorded by foramen ovale sensors inserted into the brain.
View Article and Find Full Text PDFPLoS One
January 2025
School of Information Science and Engineering, Xinjiang University, Urumqi, China.
Anomaly detection is crucial in areas such as financial fraud identification, cybersecurity defense, and health monitoring, as it directly affects the accuracy and security of decision-making. Existing generative adversarial nets (GANs)-based anomaly detection methods overlook the importance of local density, limiting their effectiveness in detecting anomaly objects in complex data distributions. To address this challenge, we introduce a generative adversarial local density-based anomaly detection (GALD) method, which combines the data distribution modeling capabilities of GANs with local synthetic density analysis.
View Article and Find Full Text PDFEntropy (Basel)
December 2024
Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin 300384, China.
Brain-computer interfaces (BCI) are an effective tool for recognizing motor imagery and have been widely applied in the motor control and assistive operation domains. However, traditional intention-recognition methods face several challenges, such as prolonged training times and limited cross-subject adaptability, which restrict their practical application. This paper proposes an innovative method that combines a lightweight convolutional neural network (CNN) with domain adaptation.
View Article and Find Full Text PDFISA Trans
January 2025
State Key Laboratory of Computer-Aided Design and Computer Graphics, Zhejiang University, Hangzhou, 310027, China; Key Laboratory of Intelligent Rescue Equipment for Collapse Accidents, Ministry of Emergency Management, Hangzhou, 310030, China; Zhejiang Laboratory, Hangzhou, 311121, China. Electronic address:
Existing cross-domain mechanical fault diagnosis methods primarily achieve feature alignment by directly optimizing interdomain and category distances. However, this approach can be computationally expensive in multi-target scenarios or fail due to conflicting objectives, leading to decreased diagnostic performance. To avoid these issues, this paper introduces a novel method called domain feature disentanglement.
View Article and Find Full Text PDFNeural Netw
January 2025
School of Computer Engineering and Science, Shanghai University, Shanghai, 200444, China. Electronic address:
Conditional adversarial domain adaptation (CADA) is one of the most commonly used unsupervised domain adaptation (UDA) methods. CADA introduces multimodal information to the adversarial learning process to align the distributions of the labeled source domain and unlabeled target domain with mode match. However, CADA provides wrong multimodal information for challenging target features due to utilizing classifier predictions as the multimodal information, leading to distribution mismatch and less robust domain-invariant features.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!