The holy grail of materials science is de novo molecular design, meaning engineering molecules with desired characteristics. The introduction of generative deep learning has greatly advanced efforts in this direction, yet molecular discovery remains challenging and often inefficient. Herein we introduce GaUDI, a guided diffusion model for inverse molecular design that combines an equivariant graph neural net for property prediction and a generative diffusion model. We demonstrate GaUDI's effectiveness in designing molecules for organic electronic applications by using single- and multiple-objective tasks applied to a generated dataset of 475,000 polycyclic aromatic systems. GaUDI shows improved conditional design, generating molecules with optimal properties and even going beyond the original distribution to suggest better molecules than those in the dataset. In addition to point-wise targets, GaUDI can also be guided toward open-ended targets (for example, a minimum or maximum) and in all cases achieves close to 100% validity of generated molecules.

Download full-text PDF

Source
http://dx.doi.org/10.1038/s43588-023-00532-0DOI Listing

Publication Analysis

Top Keywords

molecular design
12
guided diffusion
8
inverse molecular
8
gaudi guided
8
diffusion model
8
molecules
5
diffusion inverse
4
molecular
4
design
4
design holy
4

Similar Publications

Introduction: Dyslipidemia is characterized by changes in lipid and lipoprotein levels in the blood where phospholipid transfer protein (PLTP) helps to regulate and modulate the size of high-density lipoproteins (HDL), working on the reverse transport of cholesterol. ApoA-1 is the primary protein component of HDL, and certain genetic variants like rs5072, have been associated with hypertriglyceridemia in children. This study aimed to explore the association between PLTP concentrations and the effect of the genetic variant APOA1 rs5072 on hypertriglyceridemia and atherogenic dyslipidemia (AD) in the pediatric population of Southeastern Mexico.

View Article and Find Full Text PDF

Structure-based design of new anticancer N3-Substituted quinazolin-4-ones as type I ATP-competitive inhibitors targeting the deep hydrophobic pocket of EGFR.

Comput Biol Med

January 2025

Drug Design and Discovery Lab, Helmy Institute of Medical Sciences, Zewail City of Science, Technology and Innovation, Giza, 12578, Egypt; Biomedical Sciences Program, University of Science and Technology, Zewail City of Science, Technology and Innovation, Giza, 12578, Egypt. Electronic address:

Epidermal growth factor receptor (EGFR) is amongst the earliest targeted kinases by small-molecule inhibitors for the management of EGFR-positive cancer types. While a few inhibitors are granted FDA approval for clinical use, discovery of new inhibitors is still of merit to enhance ligand-binding stability and subsequent enzyme inhibition. Thus, a structure-based design approach was adopted to devise a new series of twenty-nine N3-substituted quinazolin-4-ones as type I ATP-competitive inhibitors targeting the deep hydrophobic pocket of EGFR.

View Article and Find Full Text PDF

Cancer is one of the most fatal diseases threatening public health globally, and tumor metastasis causes greater than 90 % of cancer-associated deaths, presenting huge challenges for detection and efficient treatment of various human cancers. Cancer stem cells (CSCs) are a rare population of cancer cells and increasing evidences indicated CSCs are the driving force of tumor metastasis. In this study, a p-AuNSs-assisted single-cell Raman spectra has been established, to extract and amplify of CSCs fingerprints with single cell sensitivity.

View Article and Find Full Text PDF

Mutational Profiling of Korean Lymphomas and Diffuse Large B-Cell Lymphoma Subtype Classification Using Targeted Panel Sequencing.

Arch Med Res

January 2025

Department of Laboratory Medicine, Yonsei University Wonju College of Medicine, Wonju, South Korea; Center for Precision Medicine and Genomics, Wonju Severance Christian Hospital, Wonju, South Korea. Electronic address:

Background: Lymphoma is a common hematological malignancy with diverse morphological and immunophenotypic characteristics that may affect treatment and outcomes. Thus, accurate differential diagnosis is crucial, and molecular genetic testing is valuable. We aimed to investigate the genetic characteristics of Korean patients with lymphoma using a next-generation sequencing (NGS)-based targeted panel.

View Article and Find Full Text PDF

Developing efficient and cost-effective rare earth element-based electrocatalysts for water splitting remains a significant challenge. To address this, interface engineering and charge modulation strategies were employed to create a three-dimensional coral-like CeF/MoO heterostructure electrocatalyst, grown in situ on the multistage porous channels of carbonized sugarcane fiber (CSF). Integrating abundant CeF/MoO heterostructure interfaces and numerous oxygen vacancy defects significantly enhanced the catalyst's active sites and molecular activation capabilities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!