Data-driven deep learning algorithms provide accurate prediction of high-level quantum-chemical molecular properties. However, their inputs must be constrained to the same quantum-chemical level of geometric relaxation as the training dataset, limiting their flexibility. Adopting alternative cost-effective conformation generative methods introduces domain-shift problems, deteriorating prediction accuracy. Here we propose a deep contrastive learning-based domain-adaptation method called Local Atomic environment Contrastive Learning (LACL). LACL learns to alleviate the disparities in distribution between the two geometric conformations by comparing different conformation-generation methods. We found that LACL forms a domain-agnostic latent space that encapsulates the semantics of an atom's local atomic environment. LACL achieves quantum-chemical accuracy while circumventing the geometric relaxation bottleneck and could enable future application scenarios such as inverse molecular engineering and large-scale screening. Our approach is also generalizable from small organic molecules to long chains of biological and pharmacological molecules.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s43588-023-00560-w | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!