Mammalian developmental timing is adjustable in vivo by preserving pre-implantation embryos in a dormant state called diapause. Inhibition of the growth regulator mTOR (mTORi) pauses mouse development in vitro, yet how embryonic dormancy is maintained is not known. Here we show that mouse embryos in diapause are sustained by using lipids as primary energy source. In vitro, supplementation of embryos with the metabolite L-carnitine balances lipid consumption, puts the embryos in deeper dormancy and boosts embryo longevity. We identify FOXO1 as an essential regulator of the energy balance in dormant embryos and propose, through meta-analyses of dormant cell signatures, that it may be a common regulator of dormancy across adult tissues. Our results lift a constraint on in vitro embryo survival and suggest that lipid metabolism may be a critical metabolic transition relevant for longevity and stem cell function across tissues.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10866708PMC
http://dx.doi.org/10.1038/s41556-023-01325-3DOI Listing

Publication Analysis

Top Keywords

lipid metabolism
8
embryos
6
foxo1-mediated lipid
4
metabolism maintains
4
maintains mammalian
4
mammalian embryos
4
dormancy
4
embryos dormancy
4
dormancy mammalian
4
mammalian developmental
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!