Relativistic kinetic theory is ubiquitous to several fields of modern physics, finding application at large scales in systems in astrophysical contexts, all of the way down to subnuclear scales and into the realm of quark-gluon plasmas. This motivates the quest for powerful and efficient computational methods that are able to accurately study fluid dynamics in the relativistic regime as well as the transition to beyond hydrodynamics-in principle all of the way down to ballistic regimes. We present a family of relativistic lattice kinetic schemes for the efficient simulation of relativistic flows in both strongly (fluid) and weakly (rarefied gas) interacting regimes. The method can deal with both massless and massive particles, thereby encompassing ultra- and mildly relativistic regimes alike. The computational performance of the method for the simulation of relativistic flows across the aforementioned regimes is discussed in detail, along with prospects of future applications.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s43588-022-00333-x | DOI Listing |
Phys Rev Lett
December 2024
Nicolaus Copernicus Astronomical Center of the Polish Academy of Sciences, Bartycka 18, 00-716 Warsaw, Poland.
We performed the first simulations of accretion onto the compact objects in the Reissner-Nordström (RN) space-time. The results obtained in general relativity are representative of those for spherically symmetric naked singularities and black holes in a number of modified gravity theories. A possible application of these calculations is to the active galactic nuclei with their powerful jets and outflows.
View Article and Find Full Text PDFNat Commun
January 2025
NASA Goddard Space Flight Center, Heliophysics Science Division, Greenbelt, MD, USA.
Shock waves, the interface of supersonic and subsonic plasma flows, are the primary region for charged particle acceleration in multiple space plasma systems, including Earth's bow shock, which is readily accessible for in-situ measurements. Spacecraft frequently observe relativistic electron populations within this region, characterized by energy levels surpassing those of solar wind electrons by a factor of 10,000 or more. However, mechanisms of such strong acceleration remain elusive.
View Article and Find Full Text PDFHuman activity influence Earth's environment, including the space environment hundreds to thousands of kilometers above the Earth. One direct evidence is that the 19.8 kHz electromagnetic signals launched by the North West Cape (NWC) transmitter station in Australia produce a wisp-like energy distribution of precipitating energetic electrons in Earth's inner radiation belt, observed by many Low Earth Orbiting satellites.
View Article and Find Full Text PDFNature
November 2024
Department of Physics, University of California, Santa Cruz, Santa Cruz, CA, USA.
Quantum scars refer to eigenstates with enhanced probability density along unstable classical periodic orbits. First predicted 40 years ago, scars are special eigenstates that counterintuitively defy ergodicity in quantum systems whose classical counterpart is chaotic. Despite the importance and long history of scars, their direct visualization in quantum systems remains an open field.
View Article and Find Full Text PDFIn this study, the two-dimensional (2D) triangular lattice metallic photonic crystals (PCs) in visible and infrared bands have been utilized to achieve light confinement at the Dirac frequency. Distinct from the traditional bandgap or total internal reflection cavity modes, the unique photonic localization mechanism leads to an unusual algebraic decay of state and a unique frequency located beyond any bandgaps. This investigation delves into the band structure analysis of 2D metallic PCs, specifically focusing on their distinctive features, such as photonic bandgaps and Dirac cones.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!