Background: In the Fontan palliation for single ventricle heart disease (SVHD), pulmonary blood flow is non-pulsatile/passive, low velocity, and low shear, making viscous power loss a critical determinant of cardiac output. The rheologic properties of blood in SVHD patients are essential for understanding and modulating their limited cardiac output and they have not been systematically studied. We hypothesize that viscosity is decreased in single ventricle circulation.
Methods: We evaluated whole blood viscosity, red blood cell (RBC) aggregation, and RBC deformability to evaluate changes in healthy children and SVHD patients. We altered suspending media to understand cellular and plasma differences contributing to rheologic differences.
Results: Whole blood viscosity was similar between SVHD and healthy at their native hematocrits, while viscosity was lower at equivalent hematocrits for SVHD patients. RBC deformability is increased, and RBC aggregation is decreased in SVHD patients. Suspending SVHD RBCs in healthy plasma resulted in increased RBC aggregation and suspending healthy RBCs in SVHD plasma resulted in lower RBC aggregation.
Conclusions: Hematocrit corrected blood viscosity is lower in SVHD vs. healthy due to decreased RBC aggregation and higher RBC deformability, a viscous adaptation of blood in patients whose cardiac output is dependent on minimizing viscous power loss.
Impact: Patients with single ventricle circulation have decreased red blood cell aggregation and increased red blood cell deformability, both of which result in a decrease in blood viscosity across a large shear rate range. Since the unique Fontan circulation has very low-shear and low velocity flow in the pulmonary arteries, blood viscosity plays an increased role in vascular resistance, therefore this work is the first to describe a novel mechanism to target pulmonary vascular resistance as a modifiable risk factor. This is a novel, modifiable risk factor in this patient population.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41390-023-02969-5 | DOI Listing |
Acta Neurochir (Wien)
January 2025
Division of Neurosurgery, Beth Israel Deaconess Medical Center, Harvard Medical School, 110 Francis Street , Boston, MA, 02215, USA.
Background: Variability in long-term endovascular treatment outcomes for intracranial aneurysms has prompted questions regarding the effects of these treatments on aneurysm hemodynamics. Endovascular techniques disrupt aneurysmal blood flow and shear, but their influence on intra-aneurysmal pressure remains unclear. A better understanding of aneurysm pressure effects may aid in predicting outcomes and guiding treatment decisions.
View Article and Find Full Text PDFElectromagn Biol Med
January 2025
Department of Applied Mathematics, University of Calcutta, Kolkata, India.
The current investigation explores tri-hybrid mediated blood flow through a ciliary annular model, designed to emulate an endoscopic environment. The human circulatory system, driven by the metachronal ciliary waves, is examined in this study to understand how ternary nanoparticles influence wave-like flow dynamics in the presence of interfacial nanolayers. We also analyze the effect of an induced magnetic field on Ag-Cu-/blood flow within the annulus, focusing on thermal radiation, heat sources, buoyancy forces and ciliary motion.
View Article and Find Full Text PDFBiomech Model Mechanobiol
January 2025
CNR Istituto Officina Dei Materiali, Area Science Park Basovizza, S.S. 14, Km 163,5, 34149, Trieste, Italy.
The organization and dynamics of the spectrin-actin membrane cytoskeleton play a crucial role in determining the mechanical properties of red blood cells (RBC). RBC are subjected to various forces that induce deformation during blood microcirculation. Such forces also regulate membrane tension, leading to Piezo1 channel activation, which is functionally linked to RBC dehydration through calcium influx and subsequent activation of Gardos channels, ultimately resulting in variations in RBC volume.
View Article and Find Full Text PDFRev Bras Parasitol Vet
January 2025
Programa de Pós-graduação em Ciências Veterinárias, Faculdade de Medicina Veterinária - FAVET, Universidade Federal de Mato Grosso - UFMT Cuiabá, MT, Brasil.
Canine monocytic ehrlichiosis (CME) is an infectious disease that causes hematological changes in dogs. This study investigated the correlations between hematological and hemorheological parameters, serum proteins, and triglycerides in dogs with CME. Fifty-nine blood and/or bone marrow samples were collected from dogs with or without clinical signs of CME.
View Article and Find Full Text PDFBioengineering (Basel)
December 2024
Institute of NanoEngineering and MicroSystems, National Tsing Hua University, Hsinchu City 300, Taiwan.
The incidence of stroke is on the rise globally. This affects one in every four individuals each year, underscoring the urgent need for early warning and prevention systems. The existing research highlights the significance of monitoring blood viscosity in stroke risk evaluations.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!