Cancer-associated fibroblasts (CAFs) are components of the tumor microenvironment and represent appealing therapeutic targets for translational studies. Conventional protein-based biomarkers for CAFs have been reported to be limited in their specificity, rendering difficult the identification of CAFs from normal fibroblasts (NFs) in clinical samples and dampening the development of CAF-targeted therapies to treat cancer. In this study, we propose the mitochondrial RNA and the mitochondrial DNA (mtDNA) common deletion (CD) as novel indicators of CAF identity. We found that cancer-activation correlated with decreased levels of the mtDNA CD, a condition not due to altered mitochondria count or cellular redox state, but potentially linked to the generalized overexpression of mtDNA maintenance genes in CAFs. Decreased mtDNA CD content in CAFs was associated with moderate to strong overexpression of mtDNA-encoded genes and to slightly improved mitochondrial function. We identified similar patterns of upregulation of mtDNA-encoded genes in independent single-cell RNA seq data obtained from squamous cell carcinoma (SCC) patients. By using the identified nucleic acids-based indicators, identification of CAFs from NFs could be improved, leading to potential therapeutic benefits in advancing translational and clinical studies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10766618PMC
http://dx.doi.org/10.1038/s41598-023-50213-1DOI Listing

Publication Analysis

Top Keywords

mitochondrial dna
8
common deletion
8
cancer-associated fibroblasts
8
squamous cell
8
identification cafs
8
mtdna-encoded genes
8
cafs
6
mitochondrial
4
dna common
4
deletion potential
4

Similar Publications

CMPK2 promotes NLRP3 inflammasome activation via mtDNA-STING pathway in house dust mite-induced allergic rhinitis.

Clin Transl Med

January 2025

Allergy Center, Department of Otolaryngology, Affiliated Eye and ENT Hospital, Fudan University, Shanghai, China.

Background: House dust mite (HDM) is the leading allergen for allergic rhinitis (AR). Although allergic sensitisation by inhaled allergens renders susceptible individuals prone to developing AR, the molecular mechanisms driving this process remain incompletely elucidated.

Objective: This study aimed to elucidate the molecular mechanisms underlying HDM-induced AR.

View Article and Find Full Text PDF

Progress in the Study of TAp73 and Sperm Apoptosis.

Cell Biochem Funct

January 2025

Department of Physiology and Pharmacology, Anhui University of Chinese Medicine, Hefei, Anhui, China.

The study of the mechanism of oligoasthenospermia, which is a major cause of male infertility, has been the focus of research in the field of male reproduction. TAp73, a member of the p53 family of oncogenes, is endowed with tumor-suppressing activity due to its structural and functional homology with p53. It has been found that TAp73, plays a key role in spermatogenesis and maintaining male reproduction.

View Article and Find Full Text PDF

Development of a mitochondrial mini-barcode and its application in metabarcoding for identification of leech in traditional Chinese medicine.

Sci Rep

January 2025

National Key Laboratory of Lead Druggability Research, Shanghai Institute of Pharmaceutical Industry, State Institute of Pharmaceutical Industry, 201203, Shanghai, People's Republic of China.

In Traditional Chinese Medicine (TCM), the medicinal leech is vital for treatments to promote blood circulation and eliminate blood stasis. However, the prevalence of counterfeit leech products in the market undermines the quality and efficacy of these remedies. Traditional DNA barcoding techniques, such as the COI barcode, have been limited in their application due to amplification challenges.

View Article and Find Full Text PDF

Combating chemoresistance: Current approaches & nanocarrier mediated targeted delivery.

Biochim Biophys Acta Rev Cancer

January 2025

Centre for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India; Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida, Uttar Pradesh, India. Electronic address:

Chemoresistance, a significant challenge in effective cancer treatment needs clear elucidation of the underlying molecular mechanism for the development of novel therapeutic strategies. Alterations in transporter pumps, oncogenes, tumour suppressor genes, mitochondrial function, DNA repair processes, autophagy, epithelial-mesenchymal transition (EMT), cancer stemness, epigenetic modifications, and exosome secretion lead to chemoresistance. Despite notable advancements in targeted cancer therapies employing both small molecules and macromolecules success rates remain suboptimal due to adverse effects like drug efflux, target mutation, increased mortality of normal cells, defective apoptosis, etc.

View Article and Find Full Text PDF

3-methyl-4-nitrophenol disturbs the maternal-to-zygotic transition of early embryos by damaging mitochondrial function and histone modification.

Ecotoxicol Environ Saf

January 2025

Key Laboratory of Animal Embryo Engineering and Molecular Breeding of Hubei Province, Institute of Animal Sciences and Veterinary Medicine, Hubei Academy of Agricultural Sciences, Wuhan 430070, China; Hubei Hongshan Laboratory, Wuhan 430070, China. Electronic address:

3-methyl-4-nitrophenol (PNMC), a chemical prevalent in various industries for drug, dye, and leather production, also serves as a primary byproduct of organophosphate insecticides. Despite its global recognition as an endocrine disruptor with documented reproductive toxicity, its detrimental impact on preimplantation embryonic development has yet to be thoroughly investigated. In this study, through the in vitro culture of mice embryos, it was initially observed that even low concentrations of PNMC exposure led to a significant reduction in blastocyst formation and a sharp decline in the ratio of inner cell mass within the blastocysts.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!