A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Development of a Nomogram Based on Diffusion-Weighted Imaging and Clinical Information to Predict Delayed Encephalopathy after Acute Carbon Monoxide Poisoning. | LitMetric

AI Article Synopsis

  • * Researchers analyzed data from 122 patients with acute carbon monoxide poisoning, finding that specific factors such as brain imaging results, duration of exposure, and Glasgow Coma Scale scores are significant predictors of DEACMP.
  • * A nomogram was developed based on these findings to help identify patients at higher risk for DEACMP, potentially aiding in personalized treatment strategies.

Article Abstract

Background: Delayed encephalopathy after acute carbon monoxide poisoning (DEACMP) is a severe complication that can arise from acute carbon monoxide poisoning (ACOP). This study aims to identify the independent risk factors associated with DEACMP and to develop a nomogram to predict the probability of developing DEACMP.

Methods: The data of patients diagnosed with ACOP between September 2015 and June 2021 were analyzed retrospectively. The patients were divided into the two groups: the DEACMP group and the non-DEACMP group. Univariate analysis and multivariate logistic regression analysis were conducted to identify the independent risk factors for DEACMP. Subsequently, a nomogram was constructed to predict the probability of DEACMP.

Results: The study included 122 patients, out of whom 30 (24.6%) developed DEACMP. The multivariate logistic regression analysis revealed that acute high-signal lesions on diffusion-weighted imaging (DWI), duration of carbon monoxide (CO) exposure, and Glasgow Coma Scale (GCS) score were independent risk factors for DEACMP (Odds Ratio = 6.230, 1.323, 0.714, < 0.05). Based on these indicators, a predictive nomogram was constructed.

Conclusions: This study constructed a nomogram for predicting DEACMP using high-signal lesions on DWI and clinical indicators. The nomogram may serve as a dependable tool to differentiate high-risk patients and enable the provision of personalized treatment to lower the incidence of DEACMP.

Download full-text PDF

Source
http://dx.doi.org/10.31083/j.jin2206165DOI Listing

Publication Analysis

Top Keywords

carbon monoxide
16
acute carbon
12
monoxide poisoning
12
independent risk
12
risk factors
12
diffusion-weighted imaging
8
delayed encephalopathy
8
encephalopathy acute
8
deacmp
8
identify independent
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!