Osteoporosis poses a major public health challenge, and it is characterized by low bone mass, deterioration of the microarchitecture of bone tissue, causing a consequent increase in bone fragility and susceptibility to fractures and complicating bone fixation, particularly screw implantation. In the present study, our aim was to improve implant stability in osteoporotic bone using a thermoresponsive hyaluronan hydrogel (HA-pNIPAM) to locally deliver the bisphosphonate zoledronic acid (ZOL) to prevent bone resorption and bone morphogenetic protein 2 (BMP2) to induce bone formation. Adult female Wistar rats (n = 36) were divided into 2 treatment groups: one group of SHAM-operated animals and another group that received an ovariectomy (OVX) to induce an osteoporotic state. All animals received a polyetheretherketone (PEEK) screw in the proximal tibia. In addition, subgroups of SHAM or OVX animals received either the HA-pNIPAM hydrogel without or with ZOL/BMP2, placed into the defect site prior to screw implantation. Periprosthetic bone and implant fixation were monitored using longitudinal in vivo microCT scanning post-operatively and at 3, 6, 9, 14, 20 and 28 days. Histological assessment was performed post-mortem. Our data showed that pure hydrogel has no impact of implant fixation The ZOL/BMP2-hydrogel significantly increased bone-implant contact and peri-implant bone fraction, primarily through reduced resorption. STATEMENT OF CLINICAL SIGNIFICANCE: Local delivery of ZOL and BMP2 using a biocompatible hydrogel improved implant stability in osteoporotic bone. This approach could constitute a potent alternative to systemic drug administration and may be useful in avoiding implant loosening in clinical settings.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bone.2023.117011 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!