AI Article Synopsis

  • The cornea interacts with mechanical forces to maintain its structure, transparency, and refractive power, with cells responding to these forces impacting their development and health.
  • Recent advances in corneal mechanobiology highlight the roles of mechanical forces on different corneal cell types and underscore species-specific differences useful for animal model studies.
  • Identifying knowledge gaps and opportunities for therapeutic interventions in conditions like keratoconus and Fuchs' dystrophy can improve our understanding and treatment of corneal diseases.

Article Abstract

The cornea, as a dynamic and responsive tissue, constantly interacts with mechanical forces in order to maintain its structural integrity, barrier function, transparency and refractive power. Cells within the cornea sense and respond to various mechanical forces that fundamentally regulate their morphology and fate in development, homeostasis and pathophysiology. Corneal cells also dynamically regulate their extracellular matrix (ECM) with ensuing cell-ECM crosstalk as the matrix serves as a dynamic signaling reservoir providing biophysical and biochemical cues to corneal cells. Here we provide an overview of mechanotransduction signaling pathways then delve into the recent advances in corneal mechanobiology, focusing on the interplay between mechanical forces and responses of the corneal epithelial, stromal, and endothelial cells. We also identify species-specific differences in corneal biomechanics and mechanotransduction to facilitate identification of optimal animal models to study corneal wound healing, disease, and novel therapeutic interventions. Finally, we identify key knowledge gaps and therapeutic opportunities in corneal mechanobiology that are pressing for the research community to address especially pertinent within the domains of limbal stem cell deficiency, keratoconus and Fuchs' endothelial corneal dystrophy. By furthering our understanding corneal mechanobiology, we can contextualize discoveries regarding corneal diseases as well as innovative treatments for them.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11193890PMC
http://dx.doi.org/10.1016/j.preteyeres.2023.101234DOI Listing

Publication Analysis

Top Keywords

corneal mechanobiology
16
mechanical forces
12
corneal
11
corneal cells
8
squishy matters
4
matters corneal
4
mechanobiology
4
mechanobiology health
4
health disease
4
disease cornea
4

Similar Publications

Photodynamic antimicrobial therapy with Erythrosin B, Eosin Y, and Rose Bengal for the inhibition of fungal keratitis isolates: An in vitro study.

J Photochem Photobiol B

December 2024

Anne Bates Leach Eye Center, Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL, United States of America; Ocular Microbiology Laboratory, Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami Miller School of Medicine, Miami, FL, United States of America.

Introduction: Fungal keratitis is a leading cause of corneal blindness, with current antifungal treatments having limited efficacy. One promising treatment modality is Rose Bengal (RB) photodynamic antimicrobial therapy (PDAT) that has shown mixed success against fungal keratitis. Therefore, there is a need to explore the antimicrobial efficacy of other green-light activated photosensitizers that have deep penetration in the cornea to combat the deep fungal infections, such as Erythrosin B (EB) and Eosin Y (EY).

View Article and Find Full Text PDF

Fuchs' endothelial corneal dystrophy (FECD) is a common sight-threatening condition characterised by pathological changes in the posterior cornea. Here we report observations by light, transmission and volume scanning electron microscopy on changes in the endothelium and matrix associated with the characteristic deformations of Descemet's membrane, termed guttae. Specimens were archived full-thickness human corneal tissue, removed during graft surgery, that had been fixed, stained and embedded by conventional processing methods for examination by transmission electron microscopy more than 40-years previously.

View Article and Find Full Text PDF

Corneal alkali burns persist as a significant challenge in our field, often leading to a prolonged treatment course with various sight-threatening problems. This work, of utmost importance, aimed to apply the photo-tissue bonding technique (PTB) to weld the amniotic membrane (AM) to the corneal surface versus an amniotic membrane graft (AMG) and explore its safety in saving corneal protein against alkali burn.Methods Twenty-seven rabbits with an induced corneal ulcer using 1 mol/L NaOH solution.

View Article and Find Full Text PDF

Silver nanoparticles (AgNPs) have gained attention in medicine for their potent antibacterial, antiviral, and anti-inflammatory properties. The use of silver nanoparticles in ophthalmic solutions raises concerns regarding potential toxicity of nanoparticles to ocular tissues, such as the cornea, conjunctiva, and retina, which necessitates further toxicity assessments aiding in the development of safer ophthalmic solutions. This study investigates the impact of AgNPs on corneal tissue using ophthalmic investigations, Fourier transform infrared (FTIR) spectroscopy, and chemometric analyses.

View Article and Find Full Text PDF

Purpose: To report the demographic profile, clinical characteristics, risk factors and outcomes of graft rejection after DSEK.

Methods: A total of 3073 eyes had DSEK between 2012 and 2019, of which 1710 eyes that had follow up of more than one year. Sixty-one eyes who had graft rejection during this period were studied.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!