The utilization of natural fibres often entails a lesser environmental impact when compared to synthetic fibres. Biodegradable natural fibres minimize waste and pollution, and promote sustainability, but their weaker bonds limit their resilience. These issues can be addressed by customizing the composite's mechanical properties with natural and synthetic fibres. In this study, hybrid composites were created using the hand layup method with a novel dissimilar layer arrangement of neem (N), sisal (S), and glass (G) fibre and analyze its mechanical and thermal properties. Experimental observation shows that the GN composite had a higher maximum ultimate tensile strength of 26 N/mm than the GS, GNS, and GSN composites. The GN composite had a percentage elongation of 6.33%, similar to the percentage elongation of the GS composite (6.833%), and it also had a higher ultimate shear strength of 50 MPa. The composite GS absorbed 6.6 J energy, higher than the composites GN, GNS, and GNS, which absorbed 6.1 J, 4.5 J, and 4.5 J, respectively. The fractured surface's SEM images were obtained and analyzed for failure. The results demonstrated that the hybridization was effective, and better properties can be obtained by combining neem, sisal, and glass fiber, and it can be used for other requirements, including strength, weight, cost, and ecological impact.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2023.141055 | DOI Listing |
Bioact Mater
March 2025
School of Materials Science and Engineering, Beihang University, Beijing, 100191, PR China.
Through millions of years of evolution, bones have developed a complex and elegant hierarchical structure, utilizing tropocollagen and hydroxyapatite to attain an intricate balance between modulus, strength, and toughness. In this study, continuous fiber silk composites (CFSCs) of large size are prepared to mimic the hierarchical structure of natural bones, through the inheritance of the hierarchical structure of fiber silk and the integration with a polyester matrix. Due to the robust interface between the matrix and fiber silk, CFSCs show maintained stable long-term mechanical performance under wet conditions.
View Article and Find Full Text PDFJ Physiol
January 2025
School of Life Sciences, The University of Nottingham, Queen's Medical Centre, Nottingham, UK.
C-low threshold mechanoreceptors (C-LTMRs) in animals (termed C-tactile (CT) fibres in humans) are a subgroup of C-fibre primary afferents, which innervate hairy skin and respond to low-threshold punctate indentations and brush stimuli. These afferents respond to gentle touch stimuli and are implicated in mediating pleasant/affective touch. These afferents have traditionally been studied using low-throughput, technically challenging approaches, including microneurography in humans and teased fibre electrophysiology in other mammals.
View Article and Find Full Text PDFMater Horiz
January 2025
State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources, School of Electrical and Electronic Engineering, North China Electric Power University, Beijing 102206, People's Republic of China.
Given extremely high porosity, aerogels have demonstrated remarkable advantages in serving as thermal insulation and wave-transparent materials. Unfortunately, their practical applications are greatly confined by their inherent fragility. The recent emergence of polymer aerogels presents an ideal platform for the development of flexible aerogel films.
View Article and Find Full Text PDFBiosens Bioelectron
January 2025
Institute of Physics, College of Natural Sciences, University of Rzeszow, Rzeszow, Poland.
Fabry disease (FD) is a rare disorder resulting from a genetic mutation characterized by the accumulation of sphingolipids in various cells throughout the human body, leading to progressive and irreversible organ damage, particularly in males. Genetically-determined deficiency or reduced activity of the enzyme (alpha - Galactosidase; α-Gal) leads to the accumulation of sphingolipids in the lysosomes of various cell types, including the heart, kidneys, skin, eyes, central nervous system, and digestive system, triggering damage, leading to the failure of vital organs, and resulting in progressive disability and premature death. FD diagnostics currently depend on costly and time-intensive genetic tests and enzymatic analysis, often leading to delayed or inaccurate diagnoses, which contribute to rapid disease progression.
View Article and Find Full Text PDFEBioMedicine
January 2025
MGH Biostatistics Center, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA. Electronic address:
Background: The ovarian cancer (OC) preclinical detectable phase (PCDP), defined as the interval during which cancer is detectable prior to clinical diagnosis, remains poorly characterised. We report exploratory analyses from the United Kingdom Collaborative Trial of Ovarian Cancer Screening (UKCTOCS).
Methods: In UKCTOCS between Apr-2001 and Sep-2005, 101,314 postmenopausal women were randomised to no screening (NS) and 50,625 to annual multimodal screening (MMS) (until Dec-2011) using serum CA-125 interpreted by the Risk of Ovarian Cancer Algorithm (ROCA).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!