Alzheimer's disease (AD) is a progressive neurodegenerative disease. Early detection and intervention are crucial in preventing the progression of AD. To achieve efficient and scalable AD auto-detection based on structural Magnetic Resonance Imaging (sMRI), a lightweight neural network using multi-slice sMRI is proposed in this paper. The backbone for feature extraction is based on ShuffleNet V1 architecture, which is effective for overcoming the limitations posed by limited sMRI data and resource-restricted devices. In addition, we incorporate Efficient Channel Attention (ECA) to capture cross-channel interaction information, enabling us to effectively enhance features of disease associated brain regions. To optimize the model, we employ both cross entropy loss and triplet loss functions to constrain the predicted probabilities to the ground-truth labels, and to ensure appropriate representation of distances between different classes in the learned features. Experimental results show that the classification accuracies of our method for AD vs. CN, AD vs. MCI, and MCI vs. CN classification tasks are 95.00%, 87.50%, and 85.62% respectively. Our method utilizes only 3.42 M parameters and 6.08G FLOPs, while maintaining a comparable level of performance compared to the other 5 latest lightweight methods. This model design is computationally efficient, allowing it to process large amounts of data quickly and accurately in a timely manner. Additionally, it has the potential to advance the intelligent detection of Alzheimer's disease on devices with limited computing capabilities.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.mri.2023.12.010DOI Listing

Publication Analysis

Top Keywords

alzheimer's disease
12
lightweight neural
8
neural network
8
multi-slice smri
8
disease
5
network alzheimer's
4
disease classification
4
classification multi-slice
4
smri
4
smri alzheimer's
4

Similar Publications

Metabolomics provide a promising tool for understanding dementia pathogenesis and identifying novel biomarkers. This study aimed to identify amino acid biomarkers for Alzheimer's Disease (AD) and Vascular Dementia (VD). By amino acid metabolomics, the concentrations of amino acids were determined in the serum of AD and VD patients as well as age-matched healthy controls.

View Article and Find Full Text PDF

Down syndrome (DS) is strongly associated with Alzheimer's disease (AD) due to APP overexpression, exhibiting Amyloid-β (Aβ) and Tau pathology similar to early-onset (EOAD) and late-onset AD (LOAD). We evaluated the Aβ plaque proteome of DS, EOAD, and LOAD using unbiased localized proteomics on post-mortem paraffin-embedded tissues from four cohorts (n = 20/group): DS (59.8 ± 4.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is characterized by the accumulation of amyloid-beta (Aβ) plaques in the brain, contributing to neurodegeneration. This study investigates lipid alterations within these plaques using a novel, label-free, multimodal approach. Combining infrared (IR) imaging, machine learning, laser microdissection (LMD), and flow injection analysis mass spectrometry (FIA-MS), we provide the first comprehensive lipidomic analysis of chemically unaltered Aβ plaques in post-mortem human AD brain tissue.

View Article and Find Full Text PDF

Introduction: Young-onset neurocognitive symptoms result from a heterogeneous group of neurological and psychiatric disorders which present a diagnostic challenge. To identify such factors, we analysed the Biomarkers in Younger-Onset Neurocognitive Disorders cohort, a study of individuals <65 years old presenting with neurocognitive symptoms for a diagnosis and who have undergone cognitive and biomarker analyses.

Methods: Sixty-five participants (median age at assessment of 56 years, 45% female) were recruited during their index presentation to the Royal Melbourne Hospital Neuropsychiatry Centre, a tertiary specialist service in Melbourne, Australia, and categorized as either early-onset Alzheimer's disease ( = 18), non-Alzheimer's disease neurodegeneration ( = 23) or primary psychiatric disorders ( = 24).

View Article and Find Full Text PDF

Background: Effective detection of cognitive impairment in the primary care setting is limited by lack of time and specialized expertise to conduct detailed objective cognitive testing and few well-validated cognitive screening instruments that can be administered and evaluated quickly without expert supervision. We therefore developed a model cognitive screening program to provide relatively brief, objective assessment of a geriatric patient's memory and other cognitive abilities in cases where the primary care physician suspects but is unsure of the presence of a deficit.

Methods: Referred patients were tested during a 40-min session by a psychometrist or trained nurse in the clinic on a brief battery of neuropsychological tests that assessed multiple cognitive domains.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!