Background: Dorsolateral prefrontal cortex (DLPFC) dysfunction in schizophrenia appears to reflect alterations in layer 3 pyramidal neurons (L3PNs), including smaller cell bodies and lower expression of mitochondrial energy production genes. However, prior somal size studies used biased strategies for identifying L3PNs, and somal size and levels of energy production markers have not been assessed in individual L3PNs.
Study Design: We combined fluorescent in situ hybridization (FISH) of vesicular glutamate transporter 1 (VGLUT1) mRNA and immunohistochemical-labeling of NeuN to determine if the cytoplasmic distribution of VGLUT1 mRNA permits the unbiased identification and somal size quantification of L3PNs. Dual-label FISH for VGLUT1 mRNA and cytochrome C oxidase subunit 4I1 (COX4I1) mRNA, a marker of energy production, was used to assess somal size and COX4I1 transcript levels in individual DLPFC L3PNs from schizophrenia (12 males; 2 females) and unaffected comparison (13 males; 1 female) subjects.
Study Results: Measures of L3PN somal size with NeuN immunohistochemistry or VGLUT1 mRNA provided nearly identical results (ICC = 0.96, p < 0.0001). Mean somal size of VGLUT1-identified L3PNs was 8.7% smaller (p = 0.004) and mean COX4I1 mRNA levels per L3PN were 16.7% lower (p = 0.01) in schizophrenia. These measures were correlated across individual L3PNs in both subject groups (r = 0.81-0.86).
Conclusions: This preliminary study presents a novel method for combining unbiased neuronal identification with quantitative assessments of somal size and mRNA levels. We replicated findings of smaller somal size and lower COX4I1 mRNA levels in DLPFC L3PNs in schizophrenia. The normal scaling of COX4I1 mRNA levels with somal size in schizophrenia suggests that lower markers of energy production are secondary to L3PN morphological alterations in the illness.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10898364 | PMC |
http://dx.doi.org/10.1016/j.nbd.2023.106394 | DOI Listing |
Eur J Surg Oncol
January 2025
Breast Unit, Broomfield Hospital, Mid and South Essex NHS Trust, Chelmsford, UK; School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, UK.
J Appl Physiol (1985)
May 2024
Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States.
The number of motor neurons (MNs) declines precipitously during the final trimester before birth. Thereafter, the number of MNs remains relatively stable, with their connections to skeletal muscle dependent on neurotrophins, including brain-derived neurotrophic factor (BDNF) signaling through its high-affinity full-length tropomyosin-related kinase receptor subtype B (TrkB.FL) receptor.
View Article and Find Full Text PDFNeurobiol Dis
February 2024
Translational Neuroscience Program, Department of Psychiatry, School of Medicine, University of Pittsburgh, Department of Psychiatry Biomedical Science Tower, W1653 3811 O'Hara Street Pittsburgh, PA 15213, United States of America. Electronic address:
Sci Rep
August 2023
Department of Physical Therapy, Ibaraki Prefectural University of Health Sciences, 4669-2 Ami, Ami-Machi, Inashiki-Gun, Ibaraki, 300-0394, Japan.
After an individual experiences a cervical cord injury, the cell body's adaptation to the smaller size of phrenic motoneurons occurs within several weeks. It is not known whether a routine hypercapnic load can alter this adaptation of phrenic motoneurons. We investigated this question by using rats with high cervical cord hemisection.
View Article and Find Full Text PDFJ Appl Physiol (1985)
June 2023
Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, United States.
Neuromotor control of diaphragm muscle (DIAm) motor units is dependent on an orderly size-dependent recruitment of phrenic motor neurons (PhMNs). Slow (type S) and fast, fatigue resistant (type FR) DIAm motor units, which are frequently recruited to sustain ventilation, comprise smaller PhMNs that innervate type I and IIa DIAm fibers. More fatigable fast (type FF) motor units, which are infrequently recruited for higher force, expulsive behaviors, comprise larger PhMNs that innervate more type IIx/IIb DIAm fibers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!