Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1057
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3175
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The pesticide acetochlor (ACT) is a chiral isomer commonly detected in the global environment, yet its specific impacts on liver function remain poorly understood. We utilized zebrafish and L02 cells as research models to comprehensively investigate how ACT and its chiral isomers affect the liver. Our investigations unveiled that the R, Rac, and S isomers of ACT disrupt hepatic lipid transport, catabolism, and synthesis, leading to delayed yolk sac absorption and the accumulation of lipids in zebrafish embryos. These isomers induce oxidative stress in the liver of zebrafish embryos, reducing antioxidant levels and enzyme activity. The accumulated lipids in the liver render it susceptible to oxidative stress, further exacerbating hepatocyte damage. Hepatocyte damage manifests as extensive vacuolization of liver cells and alterations in liver morphology, which are induced by R, Rac, and S. Furthermore, we elucidated the molecular mechanisms underpinning the disturbance of hepatic lipid metabolism by R, Rac, and S in L02 cells. These compounds stimulate lipid synthesis through the upregulation of the AMPK/SREBP-1c/FAS pathway while inhibiting lipolysis via downregulation of the PPAR-α/CPT-1a pathway. Remarkably, our results highlight that S exhibits significantly higher hepatotoxicity in comparison to R. This study provides valuable insights into the hepatic effects of ACT chiral isomers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2023.169781 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!