Lysine crotonylation (Kcr), a newly discovered post-translational modification, played a crucial role in physiology and disease progression. However, the roles of crotonylation in oocyte meiotic resumption remain elusive. As abnormal cumulus cell development will cause oocyte maturation arrest and female infertility, we report that cumulus cells surrounding human meiotic arrested oocytes showed significantly lower crotonylation, which was associated with decreased EP300 expression and blocked cumulus cell expansion. In cultured human cumulus cells, exogenous crotonylation or EP300 activator promoted cell proliferation and reduced cell apoptosis, whereas EP300 knockdown induced the opposite effect. Transcriptome profiling analysis in human cumulus cells indicated that functions of crotonylation were associated with activation of epidermal growth factor receptor (EGFR) pathway. Importantly, we characterized the Kcr proteomics landscape in cumulus cells by LC-MS/MS analysis, and identified that annexin A2 (ANXA2) was crotonylated in cumulus cells in an EP300-dependent manner. Crotonylation of ANXA2 enhanced the ANXA2-EGFR binding, and then activated the EGFR pathway to affect cumulus cell proliferation and apoptosis. Using mouse oocytes IVM model and EP300 knockout mice, we further confirmed that crotonylation alteration in cumulus cells affected the oocyte maturation. Together, our results indicated that EP300-mediated crotonylation is important for cumulus cells functions and oocyte maturation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2023.129149 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!