Today, building materials emit many hazardous gases in the event of a fire, causing great harm to human health and the environment. Therefore, it is of great significance to develop bio-based flame retardant materials and to realize preventive measures to reduce fires or their damage. In this work, we fabricated a novel multifunctional fire early-warning polylactic acid-based fabric (MFR-PBF) by coating MXene nanosheet, phytic acid @ furfurylamine (PA@FA) and ammonium polyphosphate (APP) via an eco-friendly layer-by-layer assembly method. MFR-PBF showed outstanding flame retardancy including a limiting oxygen index value of 35 % and better char formation capacity. More importantly, MFR-PBF exhibited sensitive fire early-warning capability (∼1 s) and excellent cyclic alarm stability (>15 cycles) due to the excellent semiconductor responsiveness (light and heat) and the significant catalytic char formation effect. Moreover, MFR-PBF is comfortable, flexible and strong enough to sew onto firefighter uniform to detect a variety of human motions, which can be monitored in the internet by using a LoRa emitter and a gateway. In addition, the controllable heating performance rendered MFR-PBF as a potential portable heater. This work provides new insights into the preparation and application of intelligent fire early-warning fabrics in the smart fire protection and Internet of Things.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ijbiomac.2023.129158 | DOI Listing |
ACS Appl Mater Interfaces
December 2024
Laboratory of Infrared Materials and Devices, The Research Institute of Advanced Technologies, Ningbo University, Ningbo 315211, China.
Wearable thermoelectric (TE)-based temperature sensors capable of detecting and transmitting temperature data from the human body and environment show promise in intelligent medical systems, human-machine interfaces, and electronic skins. However, it has remained a challenge to fabricate the flexible temperature sensors with superior sensing performance, primarily due to the low Seebeck coefficient of the TE materials. Here, we report an inorganic amorphous TE material, GeAsTe, with a high Seebeck coefficient of 1050 μV/K, which is around 3 times higher than the organic TE materials and 2 times higher than the inorganic crystal TE materials.
View Article and Find Full Text PDFStress Health
December 2024
School of Emergency Management and Safety Engineering, China University of Mining and Technology-Beijing, Beijing, China.
Earthquakes, as significant natural disasters, still cannot be accurately predicted today. Although current earthquake early warning systems can provide alerts several seconds in advance, acute stress responses (ASR) in emergency situations can waste these precious escape seconds. To investigate the correlation between personality and ASR, this study collected the temperament and character of all participants using the Chen Huichang-60 Temperament Scale and the DISC Personality Inventory.
View Article and Find Full Text PDFACS Appl Mater Interfaces
December 2024
State Key Laboratory of New Textile Materials and Advanced Processing Technologies and Key Laboratory of Textile Fiber and Products of Ministry of Education, College of Materials Science and Engineering, Wuhan Textile University, Wuhan 430200, China.
Giving Timely warnings for fire is very crucial for fire prevention and the protection of people's lives and property. However, most current fire warning sensors give warnings above 200 °C, which are not conducive to efficient and accurate warnings. Therefore, it is important to develop high-temperature sensors that can give timely, portable warnings at low temperatures (100 to 200 °C).
View Article and Find Full Text PDFChemosphere
November 2024
Environmental Engineering Department, Federal University of Paraná, Curitiba, PR, Brazil. Electronic address:
Worldwide, smoke from forest fires has deleterious health effects. Even so, because of the complexity of fire mechanics, public health authorities face challenges in forecasting and thus mitigating population exposure to smoke. The population in the Amazon basin regularly suffers from fire smoke tied to agriculture and land-use change.
View Article and Find Full Text PDFLancet
November 2024
Institute for Global Health, University College London, London, UK.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!