Effects of Fe-N co-modified biochar on methanogenesis performance, microbial community, and metabolic pathway during anaerobic co-digestion of alternanthera philoxeroides and cow manure.

J Environ Manage

Northwest A&F University, College of Mechanical and Electronic Engineering, Yangling, Shaanxi, 712100, China; Western Scientific Observing and Experimental Station for Development and Utilization of Rural Renewable Energy, Ministry of Agriculture and Rural Affairs, P.R.C., Yangling, Shaanxi, 712100, China. Electronic address:

Published: February 2024

The performance of anaerobic digestion (AD) is susceptible to disturbances in feedstock degradation, intermediates accumulation, and methanogenic archaea activity. To improve the methanogenesis performance of the AD system, Fe-N co-modified biochar was prepared under different pyrolysis temperatures (300,500, and 700 °C). Meanwhile, pristine and Fe-modified biochar were also derived from alternanthera philoxeroides (AP). The aim was to compare the effects of Fe-N co-modification, Fe modification, and pristine biochar on the methanogenic performance and explicit the responding mechanism of the microbial community in anaerobic co-digestion (coAD) of AP and cow manure (CM). The highest cumulative methane production was obtained with the addition of Fe-N-BC500 (260.38 mL/gVS), which was 42.37 % higher than the control, while the acetic acid, propionic acid, and butyric acid concentration of Fe-N-BC were increased by 147.58 %, 44.25 %, and 194.06 % compared with the control, respectively. The co-modified biochar enhanced the abundance of Chloroflexi and Methanosarcina in the AD system. Metabolic pathway analysis revealed that the increased methane production was related to the formation and metabolism of volatile fatty acids and that Fe-N-BC500 enhanced the biosynthesis of coenzyme A and the cell activity of microorganisms, accelerating the degradation of propionic acid and enhancing the hydrogenotrophic methanogenesis pathway. Overall, Fe-N co-modified biochar was proved to be an effective promoter for accelerated methane production during AD.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2023.120006DOI Listing

Publication Analysis

Top Keywords

co-modified biochar
16
fe-n co-modified
12
methane production
12
effects fe-n
8
methanogenesis performance
8
microbial community
8
metabolic pathway
8
anaerobic co-digestion
8
alternanthera philoxeroides
8
cow manure
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!