Deficiencies or excesses of dietary amino acids, and especially of methionine (Met), in laying hens can lead to abnormal protein anabolism and oxidative stress, which affect methylation and cause cellular dysfunction. This study investigated the effects of dietary methionine (Met) levels on growth performance, metabolism, immune response, antioxidant capacity, and the subsequent development of laying hens. A total of 384 healthy 1-day-old Hyline Grey chicks of similar body weight were randomly allocated to be fed diets containing 0.31%, 0.38%, 0.43% (control group), or 0.54% Met for 6 wk, with 6 replicates of 16 chicks in each. The growth performance of the chicks was then followed until 20 wk old. The results showed dietary supplementation with 0.43% or 0.54% Met significantly increased their mean daily body weight gain, final weight, and Met intake. However, the feed:gain (F/G) decreased linearly with increasing Met supplementation, from 0.31 to 0.54% Met. Met supplementation increased the serum albumin, IgM, and total glutathione concentrations of 14-day-old chicks. In contrast, the serum alkaline phosphatase activity and hydroxyl radical concentration tended to decrease with increasing Met supplementation. In addition, the highest serum concentrations of IL-10, T-SOD, and GSH-PX were in the 0.54% Met-fed group. At 42 d of age, the serum ALB, IL-10, T-SOD, GSH-PX, T-AOC, and T-GSH were correlated with dietary Met levels. Finally, Met supplementation reduced the serum concentrations of ALP, IL-1β, IgA, IgG, hydrogen peroxide, and hydroxyl radicals. Thus, the inclusion of 0.43% or 0.54% Met in the diet helps chicks achieve superior performance during the brooding period and subsequently. In conclusion, Met doses of 0.43 to 0.54% could enhance the growth performance, protein utilization efficiency, antioxidant capacity, and immune responses of layer chicks, and to promote more desirable subsequent development during the brooding period.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10792981 | PMC |
http://dx.doi.org/10.1016/j.psj.2023.103382 | DOI Listing |
Sci Rep
December 2024
Institute for Forest Resources and Environment of Guizhou, College of Forestry, Guizhou University, Guiyang, 550025, Guizhou, China.
This study aims to explore the low phosphorus (P) tolerance of saplings from different Gleditsia sinensis Lam. families. It also seeks to screen for Gleditsia sinensis families with strong low P tolerance and identify key indicators for evaluating their tolerance.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Clinical Pharmacy, Baoshan Hospital Affiliated to, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
This study investigates the potential treatment of breast cancer utilizing Gentiana robusta King ex Hook. f. (QJ) through an integrated approach involving network pharmacology, molecular docking, and molecular dynamics simulation.
View Article and Find Full Text PDFSci Rep
December 2024
School of Biotechnology, Institute of Agricultural Technology, Suranaree University of Technology, Nakhon Ratchasima, 30000, Thailand.
Effector proteins secreted via the type III secretion system (T3SS) of nitrogen-fixing rhizobia are key determinants of symbiotic compatibility in legumes. Previous report revealed that the T3SS of Bradyrhizobium sp. DOA9 plays negative effects on Arachis hypogaea symbiosis.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Food Science and Technology, Sindos Campus, International Hellenic University, 57400, Thessaloniki, Greece.
Microalgae, have emerged as a potentially promising feed additive option due to their beneficial nutritional profile rich in bioactive compounds. The present study examines the incorporation of Chlorella sorokiniana (at 0.1% and 1%) into chicken feed compared to control feed and its effect on growth and health parameters of poultry grown at pilot plant scale.
View Article and Find Full Text PDFNat Commun
December 2024
Davidson School of Chemical Engineering, Purdue University, West Lafayette, IN, USA.
Metal halide perovskites show promise for next-generation light-emitting diodes, particularly in the near-infrared range, where they outperform organic and quantum-dot counterparts. However, they still fall short of costly III-V semiconductor devices, which achieve external quantum efficiencies above 30% with high brightness. Among several factors, controlling grain growth and nanoscale morphology is crucial for further enhancing device performance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!