NsrR from Streptomyces coelicolor is a bacterial nitric oxide (NO) sensor/nitrosative stress regulator as its primary function, and has been shown to have differential response at low, mid, and high levels of NO. These must correspond to discrete structural changes at the protein-bound [4Fe-4S] cluster in response to stepwise nitrosylation of the cluster. We have investigated the effect of the monohapto carboxylate ligand in the site differentiated [4Fe-4S] cluster cofactor of the protein NsrR on modulating its reactivity to NO with a focus on indentifying mechanistic intermediates. We have prepared a synthetic model [4Fe-4S] cluster complex with tripodal ligand and one single site differentiated site occupied by either thiolate or carboxylate ligand. We report here the mechanistic details of sequential steps of nitrosylation as observed by ESI MS and IR spectroscopy. Parallel non-denaturing mass spectrometry analyses were performed using site-differentiated variants of NsrR with the native aspartic acid, cysteine, or alanine in the position of the forth ligand to the cluster. A mono-nitrosylated synthetic [4Fe-4S] cluster was observed for the first time in a biologically-relevant thiolate-based coordination environment. Combined synthetic and protein data give unprecedented clarity in the modulation of nitrosylation of a [4Fe-4S] cluster.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jinorgbio.2023.112457 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Laboratory for Protein Crystallography, Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan.
[FeFe]-hydrogenases catalyze the reversible two-electron reduction of two protons to molecular hydrogen. Although these enzymes are among the most efficient H-converting biocatalysts in nature, their catalytic cofactor (termed H-cluster) is irreversibly destroyed upon contact with dioxygen. The [FeFe]-hydrogenase CbA5H from has a unique mechanism to protect the H-cluster from oxygen-induced degradation.
View Article and Find Full Text PDFbioRxiv
January 2025
Department of Chemistry & Graduate Program in Chemistry and Chemical Biology, University of California, Davis, California, 95616, United States.
The [4Fe-4S] cluster is an important cofactor of the base excision repair (BER) adenine DNA glycosylase MutY to prevent mutations associated with 8-oxoguanine (OG). Several MutYs lacking the [4Fe-4S] cofactor have been identified. Phylogenetic analysis shows that clusterless MutYs are distributed in two clades suggesting cofactor loss in two independent evolutionary events.
View Article and Find Full Text PDFBiosci Biotechnol Biochem
December 2024
Department of Agricultural Chemistry, Graduate School of Agricultural Science, Tohoku University, Sendai, Miyagi, Japan.
Escherichia coli expressing SrPlsAR from Selenomonas ruminantium produces plasmalogen, comprising almost 60% of the total phospholipid content under anaerobic conditions. Both plasmenylethanolamine and plasmenylglycerol were detected, and the major acyl aldehyde derived from sn-1 vinyl ether was C16:1. Plasmalogen synthesis is affected by mutations in ATP-binding sites and Cys expected to be involved in the formation of the [4Fe-4S] cluster.
View Article and Find Full Text PDFTwo aconitase isoforms are present in mammalian cells: the mitochondrial aconitase (ACO2) that catalyzes the reversible isomerization of citrate to isocitrate in the citric acid cycle, and the bifunctional cytosolic enzyme (ACO1), which also plays a role as an RNA-binding protein in the regulation of intracellular iron metabolism. Aconitase activities in the different subcellular compartments can be selectively inactivated by different genetic defects, iron depletion, and oxidative or nitrative stress. Aconitase contains a [4Fe-4S] cluster that is essential for substrate coordination and catalysis.
View Article and Find Full Text PDFJ Biol Chem
December 2024
Institut für Zytobiologie im Zentrum für Synthetische Mikrobiologie SynMikro, Philipps-Universität Marburg, Marburg, Germany. Electronic address:
Mitochondria synthesize only a small set of their proteins on endogenous mitoribosomes. These particles differ in structure and composition from both their bacterial 70S ancestors and cytosolic 80S ribosomes. Recently published high resolution structures of the human mitoribosome revealed the presence of three [2Fe-2S] clusters in the small and large subunits.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!