Soil erosion in a plain river network area with dense rivers, fertile land, and agricultural development is easily causes river siltation, agricultural non-point source pollution, and water eutrophication. Therefore, the negative impact of the sediment on the environment cannot be underestimated. Most traditional sediment fingerprint tracing studies have focused on mountain basins and lack a scheme suitable for plain river network sediment tracing. Here, a typical plain river network in the Taihu Basin was selected as the study area. The flow structure and characteristics were analysed, and a sampling scheme for the stream segment and a two-step model of sediment tracing in a plain river network were proposed to quantitatively distinguish the types of sediment sources. The results indicated that the traditional discriminant function analysis adequately distinguishes the contribution rate of basin soil and has a good validation accuracy (R = 0.96, root mean square error of calibration = 5.91 %), whereas Random Forest obtains better discrimination results by mining non-linear information in the soil spectra of different land types, with R values of 0.89, 0.83, and 0.80 for farmland, forest, and grassland, respectively. The average proportion of soil in the sediment in the watershed was 23 %, and the proportion of soil in the watershed increased from upstream to downstream. The sediment sources of the Caoqiao, Yincun, and Shaoxiang Rivers mainly came from grassland (44 %), forest (39 %), and farmland (42 %), respectively. Land-use distribution, water conservation facilities, and soil particle size were the main factors affecting these sources. Each river adopts measures to remove the corresponding pollutants, optimise water and soil conservation measures for riverbank green belts and forest, and regularly clean up silt in water conservancy ditches and rivers, which can reduce the pollution impact caused by sediment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.watres.2023.121041 | DOI Listing |
Ann N Y Acad Sci
January 2025
Environmental Physics Laboratory (EPhysLab), Centro de Investigación Mariña, Universidade de Vigo, Ourense, Spain.
This study uses a combination of the FLEXPART Lagrangian dispersion model with the Weather Research and Forecasting (WRF) mesoscale Eulerian model (FLEXPART-WRF) to analyze the expected mid- to late-century changes in the moisture sources and sinks of the North American East Coast (ENA) and the Gulf of Mexico (GM), as well as their most relevant abrupt moisture transport events-atmospheric rivers (ARs) and low-level jets of the Great Plains (GPLLJ) and the Caribbean (CLLJ). Both the ENA and GM are expected to increase in importance as moisture source regions over the century, both overall and in their contributions to the ARs and both LLJs. A notable increase in the intensity of the GPLLJ and CLLJ moisture sources is also observed.
View Article and Find Full Text PDFJ Environ Manage
January 2025
School of Water Conservancy and Transportation, Zhengzhou University, Zhengzhou City, 450001, Henan Province, China. Electronic address:
Enhancing the understanding of the rainfall-runoff temporal dynamics in semi-arid and semi-humid regions is crucial for flood disaster mitigation. Loess Plateau is a unique environment within semi-arid and semi-humid regions, characterized by its deep loess soil, prevalent short-duration intense rainfall, and changes in underlying surface conditions. In this research, 25 catchments from the Loess Plateau were chosen to examine the temporal variations in event runoff responses across different time scales.
View Article and Find Full Text PDFSci Total Environ
January 2025
Department of Biology, Ecology and Earth Sciences (DIBEST), University of Calabria, Ponte Bucci street, cube 15B, 87036 Rende, Italy.
The work aims to estimate natural greenhouse gas emissions from soils in the Sibari Coastal Plain (Southern Italy), to understand (i) the contribution in terms of the total amount of CO and CH emitted in non-volcanic areas, (ii) the relationship among emitted gas, land use, organic matter and tectonic structures, and (iii) their potential environmental implications. Data were elaborated with statistical and geostatistical methods to separate the different populations and obtain prediction and probability maps. Methane fluxes had values consistently below the detection limit (0.
View Article and Find Full Text PDFJ Environ Sci (China)
July 2025
Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Shenzhen Key Laboratory of Precision Measurement and Early Warning Technology for Urban Environmental Health Risks, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China. Electronic address:
Rapid screening of inorganic arsenic (iAs) in groundwater used for drinking by hundreds of millions of mostly rural residents worldwide is crucial for health protection. Most commercial field test kits are based on the Gutzeit reaction that uses mercury-based reagents for color development, an environmental concern that increasingly limits its utilization. This study further improves the Molybdenum Blue (MB) colorimetric method to allow for faster screening with more stable reagents.
View Article and Find Full Text PDFSci Total Environ
January 2025
School of Environmental Sciences, Jawaharlal Nehru University, New Delhi 110067, India. Electronic address:
The Gangetic Plain, one of the world's most fertile regions, is vital to food and water security in densely populated areas. However, metal contamination in sediments and water poses significant challenges, owing to intensified industrial and agricultural activities and periodic flooding. The ecological risks imposed by metals in the Middle Gangetic Plain remain underexplored because of limited data on their bioavailability across varying sediment depths.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!