Callus sustained growth relies heavily on auxin, which is supplied to the culture medium. Surprisingly, there is a noticeable absence of information regarding the involvement of carrier-mediated auxin polar transport gene in callus growth regulation. Here, we delve into the role of the AUXIN RESISTANT 1 (AUX1) influx transporter in the regulation of callus growth, comparing the effects under conditions of light versus darkness. It was observed that callus growth was significantly enhanced under light illumination. This growth-stimulatory effect was accompanied by a decrease in the levels of free auxin within the callus cells when compared to conditions of darkness. In the aux1-22 mutant callus, which lacks functional AUX1, there was a substantial reduction in IAA levels. Nonetheless, the mutant callus exhibited markedly higher growth rates compared to the wild type. This suggests that the reduction in exogenous auxin uptake through the AUX1-dependent pathway may prevent the overaccumulation of growth-restricting hormone concentrations. The growth-stimulatory effect of AUX1 deficiency was counteracted by nonspecific auxin influx transport inhibitors. This finding shows that other auxin influx carriers likely play a role in facilitating the diffusion of auxin from the culture medium to sustain high growth rates. AUX1 was primarily localized in the plasma membranes of the two outermost cell layers of the callus clump and the parenchyma cells adjacent to tracheary elements. Significantly, these locations coincided with the regions of maximal auxin concentration. Consequently, it can be inferred that AUX1 mediates the auxin distribution within the callus.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jplph.2023.154168 | DOI Listing |
Sci Rep
January 2025
Biological Resource Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, 56212, Republic of Korea.
De novo shoot regeneration, characterized by the emergence of adventitious shoots from excised or damaged tissues or organs in vitro, is regulated by the complex interplay between genetic and epigenetic regulatory mechanisms. However, the specific effect of histone deacetylation on shoot regeneration remains poorly understood. This study investigated the effects of trichostatin A (TSA), a histone deacetylase inhibitor, on shoot regeneration in callus derived from root explants.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia.
Background: Samh (Mesembryanthemum forsskalii, M. cryptanthum) belongs to Aizoaceae family and is found in northern Saudi Arabia, primarily in desert or dry shrubland habitats. M.
View Article and Find Full Text PDFSci Rep
December 2024
Central Laboratory Application and Research Center, Batman University, Batman, Turkey.
This study assessed the callus morphology, growth index, callus diameter, total antioxidant activity, and total phenolic and flavonoid contents (TPC and TFC) of callus extracts from Ajuga xylorrhiza, a severely endangered plant found in small populations in Türkiye. Calluses obtained from a total of 18 applications formed in culture media supplemented with Kin and 2,4-D at six ratios (A, B, C, D, E, and F) and their subcultures (A1, A2, B1, B2, C1, C2, D1, D2, E1, E2, F1, and F2) were used for examination. Extracts A and D had a higher TFC than the other groups (27.
View Article and Find Full Text PDF<b>Background and Objective:</b> Todolo coffee (<i>Coffea arabica</i> L. var. typica) is the oldest commercially grown coffee in the Toraja region of South Sulawesi and is currently at risk of extinction.
View Article and Find Full Text PDFFront Plant Sci
December 2024
Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China.
saponins (PNS), the primary active components of (Burk.) F.H.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!