Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Inching-locomotion caterpillars (ILAR) show impressive environmental adaptation, having high dexterity and flexibility. To design robots that mimic these abilities, a novel bioinspired robotic design (BIROD) method is presented. The method is composed by an algorithm for geometrical kinematic analysis (GEKINS) to standardize the proportional dimensions according to the insect's anatomy and obtain the kinematic chains. The approach is experimentally applied to analyze the locomotion and kinematic chain of these specimens:-two pair of prolegs (represents 35 000 species) and-three pair of prolegs (represents 400 species). The obtained data indicate that the application of the proposed method permits to locate the attachment mechanisms, joints, links, and to calculate angular displacement, angular average velocity, number of degrees of freedom, and thus the kinematic chain.in contrast to, shows a longer walk-stride length, a lower number of single-rotational joints in 2D (3 DOF versus 4 DOF), and a lower number of dual-rotational joints in 3D (6 DOF versus 8 DOF). The application of BIROD and GEKINS provides the forward kinematics for 35 400 ILAR species and are expected to be useful as a preliminary phase for the design of bio-inspired arthropod robots.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1088/1748-3190/ad1b2c | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!