Ionically annealed zwitterionic microgels for bioprinting of cartilaginous constructs.

Biofabrication

Tissue Engineering + Biofabrication Laboratory, Department of Health Sciences and Technology, ETH Zürich, 8093 Zürich, Switzerland.

Published: January 2024

Foreign body response (FBR) is a pervasive problem for biomaterials used in tissue engineering. Zwitterionic hydrogels have emerged as an effective solution to this problem, due to their ultra-low fouling properties, which enable them to effectively inhibit FBR. However, no versatile zwitterionic bioink that allows for high resolution extrusion bioprinting of tissue implants has thus far been reported. In this work, we introduce a simple, novel method for producing zwitterionic microgel bioink, using alginate methacrylate (AlgMA) as crosslinker and mechanical fragmentation as a microgel fabrication method. Photocrosslinked hydrogels made of zwitterionic carboxybetaine acrylamide (CBAA) and sulfobetaine methacrylate (SBMA) are mechanically fragmented through meshes with aperture diameters of 50 and 90m to produce microgel bioink. The bioinks made with both microgel sizes showed excellent rheological properties and were used for high-resolution printing of objects with overhanging features without requiring a support structure or support bath. The AlgMA crosslinker has a dual role, allowing for both primary photocrosslinking of the bulk hydrogel as well as secondary ionic crosslinking of produced microgels, to quickly stabilize the printed construct in a calcium bath and to produce a microporous scaffold. Scaffolds showed ∼20% porosity, and they supported viability and chondrogenesis of encapsulated human primary chondrocytes. Finally, a meniscus model was bioprinted, to demonstrate the bioink's versatility at printing large, cell-laden constructs which are stable for furtherculture to promote cartilaginous tissue production. This easy and scalable strategy of producing zwitterionic microgel bioink for high resolution extrusion bioprinting allows for direct cell encapsulation in a microporous scaffold and has potential forbiocompatibility due to the zwitterionic nature of the bioink.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1758-5090/ad1b1fDOI Listing

Publication Analysis

Top Keywords

microgel bioink
12
high resolution
8
resolution extrusion
8
extrusion bioprinting
8
producing zwitterionic
8
zwitterionic microgel
8
algma crosslinker
8
microporous scaffold
8
zwitterionic
7
bioink
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!