Developing a semiconductor-based heterostructure photoanode is crucial in improving the photoelectrocatalytic (PEC) efficiency for degrading refractory organic pollutants. Nevertheless, the PEC performance of the photoanodes is usually restricted by electron/hole pair recombination, oxygen evolution, and slow electron transfer. Herein, a novel CoO@BiVO nanowire array film (Ti/CoO@BiVO) with n-type semiconductor characteristics was prepared via a straightforward hydrothermal method. The optimized Ti/CoO@BiVO electrode exhibited excellent PEC decolorization efficiency of active brilliant blue KN-R (∼92.8%) and long-term stability, outperforming recent reports. The insight reason for enhancing the PEC degradation efficiency of the Ti/CoO@BiVO electrodes can be attributed to the large electrochemical active area, low charge transfer resistance, and negative flat band potential. The formation of a type-II heterostructure was investigated between CoO and BiVO further to promote the generation and separation efficiency of electron/hole pairs, indicating that the optimized Ti/CoO@BiVO electrode has the potential for the water PEC degradation ability and superior service life.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.3c02969 | DOI Listing |
ACS Nano
January 2025
State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China.
Despite the potential of sonodynamic therapy (SDT) in treating malignant tumors, the lack of effective sonosensitizers has limited its clinical implementation. In this study, we explored the relationship between the heteroatom doping concentration in metal-organic frameworks and interface formation after pyrolysis by regulating the addition of manganese sources and successfully derived Z-scheme heterojunctions MnO/(A/R)TiO (MTO) in situ from MIL-125-NH (Ti/Mn). The electron transfer pathway introduced by interfacial contact promoted carrier separation and greatly preserved the effective redox components, significantly influencing the performance of reactive oxygen species generation.
View Article and Find Full Text PDFIntroduction: Ethiopia has made notable progress in reducing maternal and perinatal mortality, yet challenges remain in meeting the 2030 Sustainable Development Goals. Persistent issues such as low service utilization, coupled with poor quality, fragmented care, and ineffective referral systems hinder progress. The "Improve Primary Health Care Service Delivery (IPHCSD)" project, implemented by JSI and Amref Health Africa since April 2022, seeks to address these gaps through a Networks of Care (NoCs) approach.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Materials Science and Engineering, Inha University, Incheon, 22212, Korea.
This study investigates the optimization of mechanical milling parameters to enhance the recycling of Ti6Al4V machining chips, addressing a significant challenge in sustainable materials processing. The influence of ball-to-powder ratio (BPR) and ball size distribution on powder characteristics, including crystallite size, particle size, and phase composition, was systematically examined. Key findings include a 30% reduction in crystallite size, with the smallest crystallite size of 51.
View Article and Find Full Text PDFSci Rep
January 2025
School of Civil Engineering, Shijiazhuang Tiedao University, Shijiazhuang, 050043, China.
Hydrological forecasting is of great significance to regional water resources management and reservoir operation. Climate change has increased the complexity and difficulty of hydrological forecasting. In this study, a hybrid explainable streamflow forecasting model based on CNN-LSTM-Attention was established for five typical river source regions in the eastern Qinghai-Tibet Plateau (EQTP).
View Article and Find Full Text PDFNat Commun
January 2025
State Key Laboratory of Silicon and Advanced Semiconductor Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China.
The composition in ferroelectric oxide films is decisive for optimizing properties and device performances. Controlling a composition distribution in these films by a facile approach is thus highly desired. In this work, we report a solution epitaxy of PbZrTiO films with a continuous gradient of Zr concentration, realized by a competitive growth at ~220 °C.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!