Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Electrolyte decomposition limits the lifetime of commercial lithium-ion batteries (LIBs) and slows the adoption of next-generation energy storage technologies. A fundamental understanding of electrolyte degradation is critical to rationally design stable and energy-dense LIBs. To date, most explanations for electrolyte decomposition at LIB positive electrodes have relied on ethylene carbonate (EC) being chemically oxidized by evolved singlet oxygen (O) or electrochemically oxidized. In this work, we apply density functional theory to assess the feasibility of these mechanisms. We find that electrochemical oxidation is unfavorable at any potential reached during normal LIB operation, and we predict that previously reported reactions between the EC and O are kinetically limited at room temperature. Our calculations suggest an alternative mechanism in which EC reacts with superoxide (O) and/or peroxide (O) anions. This work provides a new perspective on LIB electrolyte decomposition and motivates further studies to understand the reactivity at positive electrodes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10801690 | PMC |
http://dx.doi.org/10.1021/acs.jpclett.3c03279 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!