10-Hydroxy-2-decenoic acid (10-HDA) is an important component of royal jelly, known for its antimicrobial, anti-inflammatory, blood pressure-lowering, and antiradiation effects. Currently, 10-HDA biosynthesis is limited by the substrate selectivity of acyl-coenzyme A dehydrogenase, which restricts the technique to a two-step process. This study aimed to develop an efficient and simplified method for synthesizing 10-HDA. In this study, ACOX from 1798, which catalyzes 10-hydroxydecanoyl coenzyme A desaturation for 10-HDA synthesis, was isolated and heterologously coexpressed with FadE, Macs, YdiI, and CYP in /SK after knocking out FadB, FadJ, and FadR genes. The engineered /AKS strain achieved a 49.8% conversion of decanoic acid to 10-HDA. CYP expression was improved through ultraviolet mutagenesis and high-throughput screening, increased substrate conversion to 75.6%, and the synthesis of 10-HDA was increased to 0.628 g/L in 10 h. This is the highest conversion rate and product concentration achieved in the shortest time to date. This study provides a simple and efficient method for 10-HDA biosynthesis and offers an effective method for developing strains with high product yields.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jafc.3c08142DOI Listing

Publication Analysis

Top Keywords

10-hydroxy-2-decenoic acid
8
acid 10-hda
8
10-hda biosynthesis
8
10-hda
7
biosynthesis 10-hydroxy-2-decenoic
4
acid one-step
4
one-step whole-cell
4
whole-cell catalysis
4
catalysis 10-hydroxy-2-decenoic
4
10-hda component
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!