A novel grading system combining histological grade and CDKN2A homozygous and hemizygous deletion to predict prognosis in IDH-mutant astrocytoma.

J Neuropathol Exp Neurol

Department of Pathology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, P. R. China.

Published: January 2024

Isocitrate dehydrogenase (IDH)-mutant astrocytoma with microvascular proliferation, necrosis, CDKN2A/B homozygous deletion, or any combination of these features corresponds to World Health Organization grade 4 according to current criteria. However, the prognostic significance of CDKN2A hemizygous deletion in IDH-mutant astrocytoma is not well established. We undertook a comprehensive study that included assessments of histological and genetic approaches to prognosis for these tumors. Samples from a cohort of 114 patients with extended observation were subjected to histological review and molecular analysis. CDKN2A (9p21) deletion was detected by fluorescence in situ hybridization. Overall survival (OS) was calculated via Kaplan-Meier estimation using the log-rank test. Histological grade, Ki-67 index, and the extent of surgical resection correlated with the OS of IDH-mutant astrocytoma patients. Both CDKN2A homozygous deletion and hemizygous deletion were detectable. Patients with CDKN2A homozygous-deletion tumors had the poorest OS; those with CDKN2A hemizygous-deletion tumors had an intermediate OS (p < .001). We then established a novel grading system that combined CDKN2A homozygous and hemizygous deletions with histological grade; the combined grading system was an independent prognostic factor for IDH-mutant astrocytomas. We conclude that CDKN2A homozygous and hemizygous deletion should be combined in a grading system for IDH-mutant astrocytomas.

Download full-text PDF

Source
http://dx.doi.org/10.1093/jnen/nlad112DOI Listing

Publication Analysis

Top Keywords

idh-mutant astrocytoma
16
hemizygous deletion
12
histological grade
8
cdkn2a homozygous
8
homozygous deletion
8
patients cdkn2a
8
cdkn2a
6
deletion
6
novel grading
4
grading system
4

Similar Publications

The latest World Health Organization (WHO) classification of central nervous system tumors (WHO2021/5th) has incorporated molecular information into the diagnosis of each brain tumor type including diffuse glioma. Therefore, an artificial intelligence (AI) framework for learning histological patterns and predicting important genetic events would be useful for future studies and applications. Using the concept of multiple-instance learning, we developed an AI framework named GLioma Image-level and Slide-level gene Predictor (GLISP) to predict nine genetic abnormalities in hematoxylin and eosin sections: , , mutations, promoter mutations, homozygous deletion (CHD), amplification (amp), 7 gain/10 loss (7+/10-), 1p/19q co-deletion, and promoter methylation.

View Article and Find Full Text PDF

Background: Isocitrate dehydrogenase (IDH)-mutant gliomas generally have a better prognosis than IDH-wild-type glioblastomas, and the extent of resection significantly impacts prognosis. However, there is a lack of integrated tools for predicting outcomes based on molecular subtypes and treatment modalities. This study aimed to identify factors influencing gross total resection (GTR) rates and to develop a clinical prognostic tool for IDH-mutant gliomas.

View Article and Find Full Text PDF

Management of Low-Grade Gliomas.

Cancer J

January 2025

From the Division of Neuro-Oncology, Department of Neurology and the Herbert Irving Comprehensive Cancer Center, Columbia University Vagelos College of Physicians & Surgeons and NewYork-Presbyterian, New York, NY.

The term "low-grade glioma" historically refers to adult diffuse gliomas that exhibit a less aggressive course than the more common high-grade gliomas. In the current molecular era, "low-grade" refers to World Health Organization central nervous system grade 2 gliomas almost always with an isocitrate dehydrogenase (IDH) mutation (astrocytomas and oligodendrogliomas). The term "lower-grade gliomas" has emerged encompassing grades 2 and 3 IDH-mutant astrocytomas and oligodendrogliomas, to acknowledge that histological grade is not as important a prognostic factor as molecular features, and distinguishing them from grade 4 glioblastomas, which lack an IDH mutation.

View Article and Find Full Text PDF

The cortical high-flow sign in oligodendroglioma, IDH-mutant and 1p/19q-codeleted is correlated with histological cortical vascular density.

Neuroradiology

January 2025

Department of Molecular Imaging and Diagnosis, Graduate School of Medical Sciences, Kyushu University, 3-1-1, Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan.

Background And Purpose: The cortical high-flow sign has been more commonly reported in oligodendroglioma, IDH-mutant and 1p/19q-codeleted (ODG IDHm-codel) compared to diffuse glioma with IDH-wildtype or astrocytoma, IDH-mutant. Besides tumor types, higher grades of glioma might also contribute to the cortical high flow. Therefore, we investigated whether the histological cortical vascular density or CNS WHO grade was associated with the cortical high-flow sign in patients with ODG IDHm-codel.

View Article and Find Full Text PDF

The role of glioma-associated myeloid cells in tumor growth and immune evasion remains poorly understood. We performed single-cell RNA sequencing of immune and tumor cells from 33 gliomas, identifying two distinct myeloid-derived suppressor cell (MDSC) populations in isocitrate dehydrogenase-wild-type (IDT-WT) glioblastoma: an early progenitor MDSC (E-MDSC) population with up-regulation of metabolic and hypoxia pathways and a monocytic MDSC (M-MDSC) population. Spatial transcriptomics demonstrated that E-MDSCs geographically colocalize with metabolic stem-like tumor cells in the pseudopalisading region.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!