SerpinA3N Regulates the Secretory Phenotype of Mouse Senescent Astrocytes Contributing to Neurodegeneration.

J Gerontol A Biol Sci Med Sci

Shaanxi Key Laboratory of Brain Disorders & Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, China.

Published: April 2024

Senescent astrocyte accumulation in the brain during normal aging is a driver of age-related neurodegenerative diseases such as Alzheimer's disease. However, the molecular events underlying astrocyte senescence in Alzheimer's disease are not fully understood. In this study, we demonstrated that senescent astrocytes display a secretory phenotype known as the senescence-associated secretory phenotype (SASP), which is associated with the upregulation of various proinflammatory factors and the downregulation of neurotrophic growth factors (eg, NGF and BDNF), resulting in a decrease in astrocyte-mediated neuroprotection and increased risk of neurodegeneration. We found that SerpinA3N is upregulated in senescent primary mouse astrocytes after serial passaging in vitro or by H2O2 treatment. Further exploration of the underlying mechanism revealed that SerpinA3N deficiency protects against senescent astrocyte-induced neurodegeneration by suppressing SASP-related factors and inducing neurotrophic growth factors. Brain tissues from Alzheimer's disease model mice possessed increased numbers of senescent astrocytes. Moreover, senescent astrocytes exhibited upregulated SerpinA3N expression in vitro and in vivo, confirming that our cell model recapitulated the in vivo pathology of these neurodegenerative diseases. Altogether, our study reveals a novel molecular strategy to regulate the secretory phenotype of senescent astrocytes and implies that SerpinA3N and its regulatory mechanisms may be potential targets for delaying brain aging and aging-related neurodegenerative diseases.

Download full-text PDF

Source
http://dx.doi.org/10.1093/gerona/glad278DOI Listing

Publication Analysis

Top Keywords

senescent astrocytes
20
secretory phenotype
16
neurodegenerative diseases
12
alzheimer's disease
12
senescent
8
neurotrophic growth
8
growth factors
8
astrocytes
6
serpina3n
5
serpina3n regulates
4

Similar Publications

Plasma levels of glial fibrillary acidic protein and neurofilament light chain in patients with chronic migraine: a multicenter case-control study.

Neurol Sci

January 2025

Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Via Mosè Bianchi 90, 20149, Milan, Italy.

Objective: Plasma glial fibrillary acidic protein (pGFAP) and plasma neurofilament light chain (pNfL) levels reflect astrocyte activation and neuronal damage, respectively. Whether these phenomena play a role in migraine is unknown. This study aimed to compare pGFAP and pNfL levels in patients with chronic migraine (CM) and age-matched controls and to analyze their relation with clinical features.

View Article and Find Full Text PDF

NOTCH3 Mutation Causes Glymphatic Impairment and Promotes Brain Senescence in CADASIL.

CNS Neurosci Ther

January 2025

Department of Neurology, Mental and Neurological Disease Research Center, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China.

Aims: The aim of this study is to investigate the role of glymphatic function of cerebral autosomal dominant arteriopathy, subcortical infarcts, and leukoencephalopathy (CADASIL), the most common monogenic small vessel disease caused by NOTCH3 mutation, and to explore potential therapeutic strategies to improve glymphatic function.

Methods: We assessed glymphatic influx and efflux function in CADASIL mouse models (Notch3) and correlated these findings with brain atrophy in CADASIL patients. We also investigated the underlying mechanisms of glymphatic impairment, focusing the expression of AQP4 in astrocytic endfeet.

View Article and Find Full Text PDF

Amyloid-β peptide (Aβ) is a critical cause of Alzheimer's disease (AD). It is generated from amyloid precursor protein (APP) through cleavages by β-secretase and γ-secretase. γ-Secretase, which includes presenilin, is regulated by several stimuli.

View Article and Find Full Text PDF

The dysfunction of mitochondria, the primary source of cellular energy and producer of reactive oxygen species (ROS), is associated with brain aging and neurodegenerative diseases. Scientific evidence indicates that light in the visible and near-infrared spectrum can modulate mitochondrial activity, a phenomenon known in medicine as photobiomodulation therapy (PBM-t). The beneficial effects of PBM-t on dementia and neurodegeneration have been reviewed in the literature.

View Article and Find Full Text PDF

People with mild cognitive impairment (MCI) carry a considerable risk of developing dementia. Studies have shown that female sex hormones have long-lasting neuroprotective and anti-aging properties, and the increased risk of MCI and AD is associated with the lack of estrogen during menopause. Previous studies have shown that Tiao Geng Decoction (TGD) may have antioxidant and anti apoptotic properties, which may prevent neurodegenerative diseases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!