Recently, the emergence of transverse orbital angular momentum (OAM) as a novel characteristic of light has captured substantial attention, and the significance of adjustable OAM orientation has been underscored due to its pivotal role in the interaction between light and matter. In this work, we introduce a novel approach to manipulate the orientation of photonic OAM at subwavelength scales, leveraging spatiotemporal coupling. By tightly focusing a wavepacket containing dual spatiotemporal vortices and a spatial vortex through a high numerical aperture lens, the emergence of intricate coupling phenomena leads to entangled and intricately twisted vortex tunnels. As a consequence, the orientation of spatial OAM deviates from the conventional light axis. Through theoretical scrutiny, we unveil that the orientation of photonic OAM within the focal field is contingent upon the signs of the topological charges in both spatiotemporal and spatial domains. Additionally, the absolute values of these charges govern the precise orientation of OAM within their respective quadrants. Moreover, augmenting the pulse width of the incident light engenders a more pronounced deflection angle of photonic OAM. By astutely manipulating these physical parameters, unparalleled control over the spatial orientation of OAM becomes achievable. The augmented optical degrees of freedom introduced by this study hold considerable potential across diverse domains, including optical tweezers, spin-orbit angular momentum coupling, and quantum communication.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.509594 | DOI Listing |
Beilstein J Nanotechnol
January 2025
Department for Chemistry and Physics of Materials, University of Salzburg, Jakob-Haringer-Str. 2a, 5020 Salzburg, Austria.
The scales of the gold-dust weevil are green because of three-dimensional diamond-type chitin-air photonic crystals with an average periodicity of about 430 nm and a chitin fill fraction of about 0.44. A single scale usually contains one to three crystallites with different lattice orientations.
View Article and Find Full Text PDFMicromachines (Basel)
November 2024
Advanced Fiber Devices and Systems Group, Key Laboratory of Micro and Nano Photonic Structures (MoE), Key Laboratory for Information Science of Electromagnetic Waves (MoE), Shanghai Engineering Research Center of Ultra-Precision Optical Manufacturing, School of Information Science and Technology, Fudan University, Shanghai 200433, China.
Vector bending sensors can be utilized to detect the bending curvature and direction, which is essential for various applications such as structural health monitoring, mechanical deformation measurement, and shape sensing. In this work, we demonstrate a temperature-insensitive vector bending sensor via parallel Farby-Perot interferometers (FPIs) fabricated by etching and splicing a multicore fiber (MCF). The parallel FPIs made in this simple and effective way exhibit significant interferometric visibility with a fringe contrast over 20 dB in the reflection spectra, which is 6 dB larger than the previous MCF-based FPIs.
View Article and Find Full Text PDFBiomolecules
December 2024
Institut de Chimie Physique, CNRS-UMR8000, Université Paris-Saclay, 91405 Orsay, France.
There is compelling evidence that the absorption of low-energy UV radiation directly by DNA in solution generates guanine radicals with quantum yields that are strongly dependent on the secondary structure. Key players in this unexpected phenomenon are the photo-induced charge transfer () states, in which an electric charge has been transferred from one nucleobase to another. The present work examines the factors affecting the population of these states during electronic relaxation.
View Article and Find Full Text PDFNano Lett
January 2025
State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, 100871 Beijing, China.
Calcif Tissue Int
January 2025
Department of Periodontology, Division of Oral Biology and Disease Control, Osaka University Graduate School of Dentistry, Osaka, Japan.
Human dentin performs its function throughout life, even though it is not remodeled like bone. Therefore, dentin must have extreme durability against daily repetitive loading. Elucidating its durability requires a comprehensive understanding of its shape, structure, and anisotropy at various levels of its structure.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!