The endocannabinoid system (ECS) mediates the actions of cannabis and has been implicated in playing critical roles in key developmental events, including axon guidance. Although several recent studies have demonstrated ECS involvement in neurodevelopment, an emphasis on its putative role in axon guidance has not been reviewed comprehensively. The purpose of this literature review is to evaluate the interrelationships between the ECS and axon guidance. This literature review analyzes existing literature demonstrating the normal role of endocannabinoid (eCB) signaling in axon guidance, with evidence from diverse animal models. Studies were obtained from a search strategy involving terms related to the ECS and axon guidance, and cross-checking cited literature to ensure a complete evaluation. Cannabinoid receptors, as well as eCB synthesis and degradation machinery, appear necessary for normal axon guidance during neurodevelopment. Genetic and/or pharmacological disruption of eCB signaling results in axon growth and guidance errors, implying high sensitivity to exogenous cannabinoids. Overall, this review highlights the intricate connections between the ECS and axon guidance in normal neurodevelopment. The mechanistic evidence discussed suggests that alterations of the ECS through genetic and pharmacological interference disrupt its normal functioning and by extension its normal role in regulating neural circuitry formation. A comprehensive understanding of this topic will be valuable in potentially uncovering the mechanisms responsible for the neurodevelopmental defects associated with pre-natal cannabis use.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/can.2023.0138 | DOI Listing |
Cancer Metastasis Rev
January 2025
Cancer Early Detection Advanced Research Center (CEDAR), Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA.
Nerve signaling within the tumor microenvironment (TME) plays a critical role in the initiation, progression, and metastasis of solid tumors. Due to their highly responsive behavior and activation upon injury and cancer onset, this review specifically focuses on how sympathetic nerves rewire the TME. Within tumors, sympathetic nerves closely interact with various TME components, and their combined signaling often shifts tumor-intrinsic physiology toward tumor-supportive phenotypes.
View Article and Find Full Text PDFBiol Psychiatry
January 2025
Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden; Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.
Background: Bipolar disorder (BD) is a severe psychiatric condition with unclear etiology and no established biomarkers. Here, we aimed to characterize the cerebrospinal fluid (CSF) proteome in euthymic BD individuals to identify potential protein biomarkers.
Methods: We employed nano-flow liquid chromatography coupled to high-resolution mass spectrometry to quantify over 2,000 CSF proteins in 374 individuals from two independent clinical cohorts (n=164+89 and 66+55 cases and controls, respectively).
Acta Biomater
January 2025
Central laboratory of Liaocheng People's Hospital, Liaocheng, Shandong, 252000, China. Electronic address:
Peripheral nerve injury (PNI) as a common clinical issue that presents significant challenges for repair. Factors such as donor site morbidity from autologous transplantation, slow recovery of long-distance nerve damage, and deficiencies in local cytokines and extracellular matrix contribute to the complexity of effective PNI treatment. It is extremely urgent to develop functional nerve guidance conduits (NGCs) as substitutes for nerve autografts.
View Article and Find Full Text PDFPLoS Genet
January 2025
Department of Molecular Biosciences, Program in Molecular, Cellular, and Developmental Biology, KU Center for Genomics, University of Kansas, Lawrence, Kansas, United States of America.
Recent studies in vertebrates and Caenorhabditis elegans have reshaped models of how the axon guidance cue UNC-6/Netrin functions in dorsal-ventral axon guidance, which was traditionally thought to form a ventral-to-dorsal concentration gradient that was actively sensed by growing axons. In the vertebrate spinal cord, floorplate Netrin1 was shown to be largely dispensable for ventral commissural growth. Rather, short range interactions with Netrin1 on the ventricular zone radial glial stem cells was shown to guide ventral commissural axon growth.
View Article and Find Full Text PDFBrain Res
January 2025
Department of Geriatric Medicine, Xuanwu Hospital, Capital Medical University, China National Clinical Research Center for Geriatric Medicine, Beijing 100053, China.
Objective: Effective methods for establishing an aged animal model of diabetes and glycemic fluctuation have rarely been investigated. The aim of the study was to explore the feasibility of inducing glycemic fluctuation in aged Sprague-Dawley rats and to evaluate the corresponding changes in cognitive function.
Methods: Male rats aged 48 weeks were fed a high-fat and high-glucose diet and given streptozotocin intraperitoneally to establish a rat model of type 2 diabetes mellitus (T2DM).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!