Metallo-β-lactamases (MBLs) have evolved relatively rapidly to become an international public health threat. There are no clinically available β-lactamase inhibitors with activity against MBLs. This may change with the introduction of cefepime-taniborbactam. Herein, we review three manuscripts (S. I. Drusin, C. Le Terrier, L. Poirel, R. A. Bonomo, et al., Antimicrob Agents Chemother 68:e01168-23, 2024, https://doi.org/10.1128/aac.01168-23; C. Le Terrier, C. Viguier, P. Nordmann, A. J. Vila, and L. Poirel, Antimicrob Agents Chemother 68:e00991-23, 2024, https://doi.org/10.1128/aac.00991-23; D. Ono, M. F. Mojica, C. R. Bethel, Y. Ishii, et al., Antimicrob Agents Chemother 68:e01332-23, 2024, https://doi.org/10.1128/aac.01332-23) in which investigators describe elegant experiments to explore MBL/taniborbactam interactions and modifications to MBLs, in response, to reduce the affinity of taniborbactam. Challenges with MBL inhibition will not disappear; rather, they will evolve commensurate with advancements in medicinal chemistry.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10848767 | PMC |
http://dx.doi.org/10.1128/aac.01510-23 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!