Modeling the near-field effect on molecular excited states using the discrete interaction model/quantum mechanical method.

J Chem Phys

Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania 16802, USA.

Published: January 2024

Strong light-matter interactions significantly modify the optical properties of molecules in the vicinity of plasmonic metal nanoparticles. Since the dimension of the plasmonic cavity approaches that of the molecules, it is critical to explicitly describe the nanoparticle junctions. In this work, we use the discrete interaction model/quantum mechanical (DIM/QM) method to model the coupling between the plasmonic near-field and molecular excited states. DIM/QM is a combined electrodynamics/quantum mechanical model that uses an atomistic description of the nanoparticle. We extend the DIM/QM method to include the local field effects in the sum-over-state formalism of time-dependent density functional theory. As a test of the method, we study the interactions between small organic chromophores and metal nanoparticles. In particular, we examine how the inclusion of multiple electronic transitions and intermolecular interactions modify the coupling between molecules and nanoparticles. Using the sum-over-state formalism of DIM/QM, we show that two-state models break down when the plasmon excitation is detuned from the molecular excitations. To gain further insight, we compare the simple coupled-dipole model (CDM) with the DIM/QM model. We find that CDM works well for simple systems but fails when going beyond the single molecule or single nanoparticle cases. We also find that the coupling depends strongly on the site of the nanoparticle in which the chromophore couples to. Our work suggests the importance of explicitly describing the cavity to capture the atomistic level local field environment in which the molecule strongly couples to.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0164711DOI Listing

Publication Analysis

Top Keywords

near-field molecular
8
molecular excited
8
excited states
8
discrete interaction
8
interaction model/quantum
8
model/quantum mechanical
8
interactions modify
8
metal nanoparticles
8
dim/qm method
8
local field
8

Similar Publications

Tightly confined plasmons in metal nanogaps are highly sensitive to surface inhomogeneities and defects due to the nanoscale optical confinement, but tracking and monitoring their location is hard. Here, we probe a 1-D extended nanocavity using a plasmonic silver nanowire (AgNW) on mirror geometry. Morphological changes inside the nanocavity are induced locally using optical excitation and probed locally through simultaneous measurements of surface enhanced Raman scattering (SERS) and dark-field spectroscopy.

View Article and Find Full Text PDF

Improving the Efficiency of Electrostatic Embedding Using the Fast Multipole Method.

J Comput Chem

January 2025

Max-Planck-Institut für Kohlenforschung, Mülheim an der Ruhr, Germany.

This paper reports the improvement in the efficiency of embedded-cluster model (ECM) calculations in ORCA thanks to the implementation of the fast multipole method. Our implementation is based on state-of-the-art algorithms and revisits certain aspects, such as efficiently and accurately handling the extent of atomic orbital shell pairs. This enables us to decompose near-field and far-field terms in what we believe is a simple and effective manner.

View Article and Find Full Text PDF

Nanostructured plasmonic surfaces allow for precise tailoring of electromagnetic modes within sub-diffraction mode volumes, boosting light-matter interactions. This study explores vibrational strong coupling (VSC) between molecular ensembles and subradiant "dark" cavities that support infrared quadrupolar plasmonic resonances (QPLs). The QPL mode exhibits a dispersion characteristic of bound states in the continuum (BIC).

View Article and Find Full Text PDF
Article Synopsis
  • * It identifies that surface pits, ranging in size and depth, are influenced by factors such as substrate annealing temperature and the alloy composition of InAlAs.
  • * A model is proposed linking the formation of these surface pits and composition clusters to local strain fields near threading dislocations affecting the incorporation of In adatoms during growth.
View Article and Find Full Text PDF

With the rapid development of terahertz-enabled devices, the study of miniaturized and integrated systems has attracted significant attention. We experimentally demonstrate an imaging-based pixelated metamaterial for detecting terahertz molecular fingerprints related to intermolecular vibrations and large-amplitude intramolecular modes, including chemical identification and compositional analysis. The compact THz sensor consists of a 4 × 4 pixelated filter-detector array with transmission resonances tuned to discrete frequencies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!