Septic myocardial injury is a common complication of severe sepsis, which occurs in about 50% of cases. Patients with this disease may experience varying degrees of myocardial damage. Annexin-A1 short peptide (ANXA1sp), with a molecular structure of Ac-Gln-Ala-Tyr, has been reported to exert an organ protective effect in the perioperative period by modulating sirtuin-3 (SIRT3). Whether it possesses protective activity against sepsis-induced cardiomyopathy is worthy of study. This study aimed to investigate whether ANXA1sp exerts its anti-apoptotic effect in septic myocardial injury and via regulating SIRT3. In this study, we established and models of septic myocardial injury based on C57BL/6 mice and primary cardiomyocytes by lipopolysaccharide (LPS) induction. Results showed that ANXA1sp pretreatment enhanced the seven-day survival rate, improved left ventricular ejection fraction (EF), left ventricular fractional shortening (FS), and cardiac output (CO), and reduced the levels of creatine kinase-MB (CK-MB), cardiac troponin I (cTnI), and lactate dehydrogenase (LDH). Western blotting results revealed that ANXA1sp significantly increased the expression of SIRT3, Bcl-2, and downregulated Bax expression. TUNEL staining and flow cytometry results showed that ANXA1sp could attenuate the apoptosis rate of cardiomyocytes, whereas this anti-apoptotic effect was significantly attenuated after SIRT3 knockout. To sum up, ANXA1sp can alleviate LPS-induced myocardial injury by reducing myocardial apoptosis via SIRT3 upregulation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.14670/HH-18-691 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!