Purpose: Widely used conventional 2D T * approaches that are based on breath-held, electrocardiogram (ECG)-gated, multi-gradient-echo sequences are prone to motion artifacts in the presence of incomplete breath holding or arrhythmias, which is common in cardiac patients. To address these limitations, a 3D, non-ECG-gated, free-breathing T * technique that enables rapid whole-heart coverage was developed and validated.

Methods: A continuous random Gaussian 3D k-space sampling was implemented using a low-rank tensor framework for motion-resolved 3D T * imaging. This approach was tested in healthy human volunteers and in swine before and after intravenous administration of ferumoxytol.

Results: Spatial-resolution matched T * images were acquired with 2-3-fold reduction in scan time using the proposed T * mapping approach relative to conventional T * mapping. Compared with the conventional approach, T * images acquired with the proposed method demonstrated reduced off-resonance and flow artifacts, leading to higher image quality and lower coefficient of variation in T *-weighted images of the myocardium of swine and humans. Mean myocardial T * values determined using the proposed and conventional approaches were highly correlated and showed minimal bias.

Conclusion: The proposed non-ECG-gated, free-breathing, 3D T * imaging approach can be performed within 5 min or less. It can overcome critical image artifacts from undesirable cardiac and respiratory motion and bulk off-resonance shifts at the heart-lung interface. The proposed approach is expected to facilitate faster and improved cardiac T * mapping in those with limited breath-holding capacity or arrhythmias.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mrm.29968DOI Listing

Publication Analysis

Top Keywords

conventional approaches
8
non-ecg-gated free-breathing
8
imaging approach
8
images acquired
8
approach
5
proposed
5
non-electrocardiogram-gated free-breathing
4
free-breathing off-resonance
4
off-resonance reduced
4
reduced high-resolution
4

Similar Publications

Tumor heterogeneity remains a formidable obstacle in targeted cancer therapy, often leading to suboptimal treatment outcomes. This study presents an innovative approach that harnesses controlled inflammation to guide neutrophil-mediated drug delivery, effectively overcoming the limitations imposed by tumor heterogeneity. By inducing localized inflammation within tumors using lipopolysaccharide, it significantly amplify the recruitment of drug-laden neutrophils to tumor sites, irrespective of specific tumor markers.

View Article and Find Full Text PDF

Background: The COVID-19 pandemic is a global crisis, and health systems worldwide have faced numerous challenges in containing it. This study aimed to identify the challenges faced by the Iranian health system in controlling the COVID-19 pandemic.

Methods: A conventional content analysis approach was employed in this qualitative study.

View Article and Find Full Text PDF

The connection between metabolic reprogramming and tumor progression has been demonstrated in an increasing number of researches. However, further research is required to identify how metabolic reprogramming affects interpatient heterogeneity and prognosis in clear cell renal cell carcinoma (ccRCC). In this work, single-cell RNA sequencing (scRNA-seq) based deconvolution was utilized to create a malignant cell hierarchy with metabolic differences and to investigate the relationship between metabolic biomarkers and prognosis.

View Article and Find Full Text PDF

Combating chemoresistance: Current approaches & nanocarrier mediated targeted delivery.

Biochim Biophys Acta Rev Cancer

January 2025

Centre for Medical Biotechnology, Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India; Amity Institute of Molecular Medicine and Stem Cell Research, Amity University, Noida, Uttar Pradesh, India. Electronic address:

Chemoresistance, a significant challenge in effective cancer treatment needs clear elucidation of the underlying molecular mechanism for the development of novel therapeutic strategies. Alterations in transporter pumps, oncogenes, tumour suppressor genes, mitochondrial function, DNA repair processes, autophagy, epithelial-mesenchymal transition (EMT), cancer stemness, epigenetic modifications, and exosome secretion lead to chemoresistance. Despite notable advancements in targeted cancer therapies employing both small molecules and macromolecules success rates remain suboptimal due to adverse effects like drug efflux, target mutation, increased mortality of normal cells, defective apoptosis, etc.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the use of Polar Organic Chemical Integrative Samplers (POCIS) as a more effective method for monitoring pharmaceutical residues in wastewater compared to traditional grab sampling.
  • POCIS allows for continuous sampling over days or weeks, providing more representative data, though challenges remain in obtaining precise quantitative results due to calibration needs.
  • The research successfully identifies and calibrates sampling rates for 49 pharmaceuticals in a wastewater treatment plant near Barcelona, yielding high concentrations of specific compounds, thus establishing a methodology for better environmental monitoring of pharmaceuticals.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!