The treatment of fungal infections is challenging with high death rates reported among immunocompromised patients. The currently available antifungals suffer from poor bioavailability and solubility, pharmacokinetics, and drug resistance, with limited cellular uptake. The clinical pipeline of new antifungals is dry. The incorporation of antifungal drugs into polymer-based nanocarriers to form nanotherapeutics is a promising approach to enhance the therapeutic outcomes of the available antifungal drugs. This review summarizes different polymer-based nanotherapeutics strategies that have been explored for the delivery of antifungals, resulting in enhanced therapeutic outcomes, such as improved pharmacokinetics, targeted/sustained delivery, prolonged drug circulation, retention of the drugs at the localized site of action, and overcoming drug resistance when compared with the free antifungal drugs.

Download full-text PDF

Source
http://dx.doi.org/10.4155/tde-2023-0090DOI Listing

Publication Analysis

Top Keywords

antifungal drugs
16
drug resistance
8
therapeutic outcomes
8
drugs
5
nanotherapeutics delivery
4
antifungal
4
delivery antifungal
4
drugs treatment
4
treatment fungal
4
fungal infections
4

Similar Publications

Cryptococcal meningitis is an alarming fungal infection that usually affects the meninges surrounding the brain and spinal cord. The causative organism is Cryptococcus neoformans. Although this infection can occur in normal individuals, it is more often seen in patients with human immunodeficiency virus/acquired immunodeficiency syndrome.

View Article and Find Full Text PDF

Seven-membered nitrogen-containing heterocycles, particularly azepine-based compounds, represent an intriguing class of molecules with vast arrays of applications. These compounds have garnered considerable attention in synthetic and medicinal chemistry due to their non-planar, non-aromatic features, which offer structural flexibility and diversity to design new drugs with improved pharmacological properties. This review summarizes the recent advances in the synthesis of azepine derivatives, including eco-friendly methodologies that align with the principles of green chemistry, which emphasize atom economy, sustainability, and waste reduction.

View Article and Find Full Text PDF

Phototoxic reaction to oral terbinafine due to Tinea capitis in a child.

Acta Dermatovenerol Croat

November 2024

Prof. Ana Bakija-Konsuo, MD, PhD, Clinic for Dermatovenerology CUTIS, Vukovarska 22, Dubrovnik, Croatia;

We report the case of an 18-month-old boy who developed a phototoxic skin reaction to terbinafine on his scalp, ears, and face in the form of disseminated erythematous plaques, which resembled subacute lupus erythematosus (SCLE) in their clinical presentation. Skin changes appeared a short time after the boy was exposed to sunlight during the period of time when he was treated with oral terbinafine due to Microsporum canis fungal scalp infection. Tinea capitis is a common dermatophyte infection primarily affecting prepubertal children (1).

View Article and Find Full Text PDF

Objective: To retrospectively analyze the incidence of infections in elderly acute myeloid leukemia (AML) patients undergoing induction therapy with venetoclax combined with hypomethylating agents and to compare these findings with those from patients receiving standard or low-dose chemotherapy.

Methods: Medical records of 169 elderly (≥60 years old) AML patients diagnosed via MICM (morphology, immunology, cytogenetics, and molecular genetics) at the First Affiliated Hospital of USTC between June 2019 and June 2022 were reviewed. Patients were divided into three groups: venetoclax combined with hypomethylating agents group (targeted therapy group), standard chemotherapy group, and low-dose chemotherapy group.

View Article and Find Full Text PDF

Comparison of the Impact of tNGS with mNGS on Antimicrobial Management in Patients with LRTIs: A Multicenter Retrospective Cohort Study.

Infect Drug Resist

January 2025

Department of Respiratory and Critical Care Medicine, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing, Jiangsu, 210000, People's Republic of China.

Background: tNGS and mNGS are valuable tools for diagnosing pathogens in lower respiratory tract infections (LRTIs), which subsequently influence treatment strategies. However, the impact of tNGS and mNGS on antimicrobial stewardship in patients with LRTIs remains unclear.

Methods: Patients diagnosed with LRTIs who underwent tNGS or mNGS between June 2021 and January 2024 were included.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!