Ultrafiltration (UF) is a high-potential technology for purifying natural surface water; however, the problem of membrane fouling has limited its widespread application. Herein, ultraviolet (UV)-activated ferrate (Fe(vi)) was used to purify natural surface water and improve the performance of the UF membrane. The combination of UV and Fe(vi) could generate active species (Fe(v), Fe(iv), ˙OH and O˙) to degrade pollutants, while the produced Fe(iii) had the effect of coagulation. With the above action, pollutants were removed, and the pollution load of natural surface water was reduced. After treatment with the UV/Fe(vi) system, dissolved organic carbon was reduced by 49.38%, while UV was reduced by 45.00%. The removal rate was further increased to 54.88% and 51.67% after UF treatment. In addition, the fluorescent organics were reduced by 44.22%, and the molecular weight of the organics became smaller. In the stage of UF, the terminal / was increased from 0.61 to 0.92, and the membrane fouling resistance was decreased by 85.94%. The analysis of the membrane fouling mechanism indicates that the role of cake filtration was weakened among all the mechanisms. Fourier transform infrared spectroscopy showed that less pollutants were accumulated on the membrane surface, and scanning electron microscopy revealed that the membrane pore blockage was relieved. In summary, the UV/Fe(vi) co-treatment process proposed in this study can significantly improve the purification efficiency of the UF systems in natural surface water treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10763611PMC
http://dx.doi.org/10.1039/d3ra05582eDOI Listing

Publication Analysis

Top Keywords

natural surface
20
surface water
20
membrane fouling
12
surface
6
membrane
6
natural
5
water
5
coupling pretreatment
4
pretreatment ultraviolet/ferrate
4
ultraviolet/ferrate uv/fevi
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!