In this work, a portable electrochemical glucose sensor was studied based on a laser-induced graphene (LIG) composite electrode. A flexible graphene electrode was prepared using LIG technology. Poly(3,4-ethylene dioxythiophene) (PEDOT) and gold nanoparticles (Au NPs) were deposited on the electrode surface by potentiostatic deposition to obtain a composite electrode with good conductivity and stability. Glucose oxidase (GOx) was then immobilized using glutaraldehyde (GA) to create an LIG/PEDOT/Au/GOx micro-sensing interface. The concentration of glucose solution is directly related to the current value by chronoamperometry. Results show that the sensor based on the LIG/PEDOT/Au/GOx flexible electrode can detect glucose solutions within a concentration range of 0.5 × 10 to 2.5 × 10 mol L. The modified LIG electrode provides the resulting glucose sensor with an excellent sensitivity of 341.67 μA mM cm and an ultra-low limit of detection (S/N = 3) of 0.2 × 10 mol L. The prepared sensor exhibits high sensitivity, stability, and selectivity, making it suitable for analyzing biological fluid samples. The composite electrode is user-friendly, and can be built into a portable biosensor device through smartphone detection. Thus, the developed sensor has the potential to be applied in point-of-care platforms such as environmental monitoring, public health, and food safety.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10759202PMC
http://dx.doi.org/10.1039/d3ra06947hDOI Listing

Publication Analysis

Top Keywords

composite electrode
16
based laser-induced
8
laser-induced graphene
8
electrode
8
glucose sensor
8
glucose
5
sensor
5
portable glucose
4
glucose sensing
4
sensing analysis
4

Similar Publications

Tin sulphide compounds (SnS, x = 1, 2) are potential anode materials for potassium-ion batteries (PIBs) due to their characteristic layered structure, high theoretical capacity, non-toxicity and low production cost. However, they suffer from significant volume changes resulting in poor performance of such anodes. In this work incorporation of SnS into the carbon structure was expected to overcome these disadvantages.

View Article and Find Full Text PDF

Interfacial functionalization and capillary force welding of enhanced silver nanowire-cellulose nanofiber composite electrodes for electroluminescent devices.

Int J Biol Macromol

December 2024

Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, PR China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510640, PR China.

The development of flexible, intelligent, and lightweight optoelectronic devices based on flexible transparent conductive electrodes (FTCEs) utilizing silver nanowires (AgNWs) has garnered increasing attention. However, achieving low surface resistance, strong adhesion to the flexible substrate, low surface roughness, and green degradability remains a challenge. Here, a composite electrode combining natural polymer cellulose nanofibers (TCNFs) with AgNWs was prepared.

View Article and Find Full Text PDF

A novel proposal is introduced with an unlabeled electrochemical immunosensor for the detection of tumor broad-spectrum biomarker vascular endothelial growth factor (VEGF165) Copper-based metal organic frameworks (Cu MOFs)-carbon nanotubes (MWCNTs) were employed as its substrates, functionalized with methylene blue (MB) for signal enhancement. Cu-MOFs-MWCNTs nanocomposites were synthesized successfully via a solvothermal method and were then deposited on the surface of a glassy carbon electrode (GCE), with the addition of methylene blue to amplify the signal. Due to the expansive specific surface area provided by the carbon nanotubes and the amino groups facilitated by the metal-organic framework nanomaterials, the anti-VEGF165 monoclonal antibody was immobilized on the electrochemical immunosensor through covalent bonding, which could bind specifically to VEGF165, thereby causing a detectable change in the current.

View Article and Find Full Text PDF

Nonporous TiO@C microsphere with a highly integrated structure for high volumetric lithium storage and enhance initial coulombic efficiency.

Sci Rep

December 2024

Shandong Engineering Research Center of Green and High-value Marine Fine Chemical, Weifang University of Science and Technology, Shouguang, 262700, People's Republic of China.

To enhance the volumetric energy density and initial coulombic efficiency (ICE) of titanium oxide (TiO) as anode electrode material for lithium-ion batteries (LIB), this study employed a surface-confined in-situ inter-growth mechanism to prepare a TiO embedded carbon microsphere composite. The results revealed that the composite exhibited a highly integrated structure of TiO with oxygen vacancies and carbon, along with an exceptionally small specific surface area of 11.52 m/g.

View Article and Find Full Text PDF

Robust and ultra-thin nanocellulose/MXene composite film and its performance in efficient electricity-generation and sensing.

Int J Biol Macromol

December 2024

Department of Plastic and Cosmetic Surgery, Treatment Center of Burn and Trauma, Affiliated Hospital of Jiangnan University, Wuxi 214122, China. Electronic address:

The conversion of mechanical energy into electrical energy by triboelectric nanogenerators (TENG) has attracted attention in recent years, particularly in the field of wearable sensor. In this work, TEMPO-oxidized cellulose nanofibers (TOCNF) with carboxylate groups were compounded with MXene to serve as both the negative friction layer and the electrode in assembling a TENG with nylon. The synergistic effect between TOCNF and MXene was analyzed to disclose its influence on the performance of the as-prepared TENG.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!