Thiazolines and their derivatives hold significant importance in the field of medicinal chemistry due to their promising potential as pharmaceutical agents. These molecular entities serve as critical scaffolds within numerous natural products, including curacin A, thiangazole, and mirabazole, and play a vital role in a wide array of physiological reactions. Their pharmacological versatility encompasses anti-HIV, neurological, anti-cancer, and antibiotic activities. Over the course of recent decades, researchers have extensively explored and developed analogs of these compounds, uncovering compelling therapeutic properties such as antioxidant, anti-tumor, anti-microbial, and anti-inflammatory effects. Consequently, thiazoline-based compounds have emerged as noteworthy targets for synthetic endeavors. In this review, we provide a comprehensive summary of recent advancements in the synthesis of thiazolines and thiazoline-based derivatives, along with an exploration of their diverse potential applications across various scientific domains.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10759189 | PMC |
http://dx.doi.org/10.1039/d3ra06444a | DOI Listing |
Chem Commun (Camb)
January 2025
School of Chemistry, Indian Institute of Science Education and Research Thiruvananthapuram, Thiruvananthapuram, Kerala, 695551, India.
Atomically precise metal nanoclusters (NCs) and metal-organic frameworks (MOFs) possess distinct properties that can present challenges in certain applications. However, integrating these materials to create new composite functional materials has gained significant interest due to their unique characteristics through a range of applications, particularly in catalysis. Considering MOFs as hosts and NCs as guests, several synergistic effects have been observed in composites, particularly in environmental catalytic reactions.
View Article and Find Full Text PDFACS Chem Biol
January 2025
Department of Chemistry, Binghamton University, the State University of New York, Binghamton, New York 13902, United States.
RNA interference (RNAi) has rapidly matured as a novel therapeutic approach. In this field, chemical modifications have been critical to the clinical success of short interfering RNAs (siRNAs). Notwithstanding the significant advances, achieving robust durability and gene silencing in extrahepatic tissues, as well as reducing off-target effects of siRNA, are areas where chemical modifications can still improve siRNA performance.
View Article and Find Full Text PDFDiscov Oncol
January 2025
Western Institute of Digital-Intelligent Medicine, 401329, Chongqing, China.
Background: The metabolism of stearoyl-GPE plays a key role in the liver metastasis of gastric cancer. This investigation delves into the mechanisms underlying the intricate tumor microenvironment (TME) heterogeneity triggered by stearoyl metabolism in gastric cancer with liver metastasis (LMGC), offering novel perspectives for LMGC.
Objective: Utilizing Mendelian randomization, we determined that stearoyl metabolism significantly contributes to the progression of gastric cancer (GC).
Methods Mol Biol
January 2025
Department of Food Quality and Nutrition, Research and Innovation Center, Fondazione Edmund Mach, San Michele all'Adige, Italy.
The final aim of metabolomics is the comprehensive and holistic study of the metabolome in biological samples. Therefore, the use of instruments that enable the analysis of metabolites belonging to various chemical classes in a wide range of concentrations is essential, without compromising on robustness, resolution, sensitivity, specificity, and metabolite annotation. These characteristics are crucial for the analysis of very complex samples, such as wine, whose metabolome is the result of the sum of metabolites derived from grapes, yeast(s), bacteria(s), and chemical or physical modification during winemaking.
View Article and Find Full Text PDFMethods Mol Biol
January 2025
Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College, London, UK.
Untargeted analysis by LC-MS is a valuable tool for metabolic profiling (metabonomics/metabolomics), and applications of this technology have grown rapidly over the past decade. LC-MS offers advantages of speed, sensitivity, relative ease of sample preparation, and large dynamic range compared to other platforms in this role. However, like any analytical approach, there are still drawbacks and challenges that have to be overcome, some of which are being addressed by advances in both column chemistries and instrumentation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!