Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Cell models are indispensable tools in biotechnology when investigating the functional properties of organic compounds. The emergence of various additives designed to enhance animal production has introduced the need for in-depth evaluations, which are often hindered by the complexities of testing. In this study, we harnessed cell-based models to scrutinize the impact of Solergy as a regulator of cellular metabolism with a particular focus on its modulation of glycogen and antioxidant effects. Our experiment was designed to include assessments of the influence of Solergy on the viability of both terrestrial and aquatic vertebrate cell models, which revealed the benign nature of Solergy and its lack of adverse effects. Furthermore, we examined the capacity of Solergy to modulate intracellular ATP concentrations and enhance glycogen accumulation. Notably, the antioxidant potential of Solergy and its ability to mitigate cellular aging were evaluated within the same cellular frameworks. The outcomes of our investigation suggest that Solergy is a potent metabolic regulator that elevates cellular activity while exerting an antioxidant effect. Importantly, our study demonstrates that Solergy does not induce changes in membrane oxidation. These findings indicate the potential of using Solergy to regulate glycogen synthesis, intracellular ATP concentrations, and oxidative stress in production animals. The multifaceted effects of this additive, which acts as both a metabolism enhancer and an antioxidant, open doors to the creation of custom diets tailored to meet specific production needs while maintaining stable production parameters.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10761344 | PMC |
http://dx.doi.org/10.1016/j.btre.2023.e00821 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!