Imidazo[1,2-]pyrimidine derivatives bearing imine groups (-) were successfully synthesized in moderate to good yields using microwave-assisted heating. Corresponding amine derivatives (-) were also obtained by the reduction reaction of the imine derivatives (-). All synthesized products were characterized by FT-IR, H NMR, C NMR, and LC-MS spectroscopic techniques. In silico ADMET, Lipinski, and drug-likeness studies of the compounds were conducted and all were found to be suitable drug candidates. The cytotoxicity of the potential drug molecules was screened against the breast cancer cell lines MCF-7 and MDA-MB-231 and the healthy model HUVEC by the sulforhodamine B method. According to the antiproliferative studies, compounds and showed remarkable inhibition of MCF-7 cells with IC values of 43.4 and 39.0 μM and of MDA-MB-231 cells with IC values of 35.9 and 35.1 μM, respectively. In particular, compound selectively inhibited the proliferation of MCF-7 1.6-fold and MDA-MB-231 2.0-fold relative to healthy cells. Moreover, the apoptotic mechanism studies indicated that compound induced apoptosis by moderately increasing the ratio of Bax/Bcl-2 genes. Imidazo[1,2-]pyrimidine derivative , a promising cytotoxic agent, may be helpful in the discovery of new and more efficient anticancer agents for breast cancer treatment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10760840 | PMC |
http://dx.doi.org/10.55730/1300-0527.3594 | DOI Listing |
J Med Chem
January 2025
School of Pharmacy, College of Pharmacy, Taipei Medical University, Taipei 110, Taiwan.
Since decades after temozolomide was approved, no effective drugs have been developed. Undoubtedly, blood-brain barrier (BBB) penetration is a severe issue that should be overcome in glioblastoma multiforme (GBM) drug development. In this research, we were inspired by linezolid through structural modification with several bioactive moieties to achieve the desired brain delivery.
View Article and Find Full Text PDFPharmacol Rep
January 2025
Department of Pharmacy, The First People's Hospital of Changzhou/The Third Affiliated Hospital of Soochow University, Changzhou, 213003, Jiangsu, China.
Tacrolimus (TAC) is an immunosuppressant widely utilized in organ transplantation. One of its primary adverse effects is glucose metabolism disorder, which significantly increases the risk of diabetes. Investigating the molecular mechanisms underlying TAC-induced diabetes is essential for developing effective prevention and treatment strategies for these adverse effects.
View Article and Find Full Text PDFDiscov Oncol
January 2025
Department of Biotechnology, School of Bio Sciences and Technology (SBST), Vellore Institute of Technology (VIT), Vellore, 632014, India.
Cancer, one of the deadliest diseases, has remained the epicenter of biological research for more than seven decades. Yet all the efforts for a perfect therapeutic cure come with certain limitations. The use of medicinal plants and their phytochemicals as therapeutics has received much attention in recent years.
View Article and Find Full Text PDFMicrob Ecol
January 2025
Department of Biotechnology, Center for Research and Innovation in Multidisciplinary Active Sciences (CIICAM), Chiclayo, Peru.
Microbial biotechnology employs techniques that rely on the natural interactions that occur in ecosystems. Bacteria, including rhizobacteria, play an important role in plant growth, providing crops with an alternative that can mitigate the negative effects of abiotic stress, such as those caused by saline environments, and increase the excessive use of chemical fertilizers. The present study examined the promoting potential of bacterial isolates obtained from the rhizospheric soil and roots of the Asparagus officinalis cultivar UF-157 F2 in Viru, la Libertad, Peru.
View Article and Find Full Text PDFReprod Sci
January 2025
Department of Food Science and Engineering, Institute of Food Safety and Nutrition, Jinan University, 601 Huangpu Rd, Guangzhou, 510632, PR China.
High-fructose and high-fat diet (HFHFD) has been associated with impaired spermatogenesis, leading to decreased sperm quality and increased male infertility, with similar effects observed in offspring. Cyanidin-3-O-glucoside (C3G), a recognized food antioxidant, has shown promise in protecting in male reproduction and modulating epigenetic modifications. However, its potential role in ameliorating intergenerational inheritance induced by HFHFD remains underexplored.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!