Disease-modifying osteoarthritis drugs (DMOADs) are a new therapeutic class for osteoarthritis (OA) prevention or inhibition of the disease development. Unfortunately, none of the DMOADs have been clinically approved due to their poor therapeutic performances in clinical trials. The joint environment has played a role in this process by limiting the amount of drug effectively delivered as well as the time that the drug stays within the joint space. The current study aimed to improve the delivery of the DMOADs into cartilage tissue by increasing uptake and retention time of the DMOADs within the tissue. Licofelone was used a model DMOAD due to its significant therapeutic effect against OA progression as shown in the recent phase III clinical trial. For this purpose licofelone was covalently conjugated to the two different A16 and A87 poly-beta-amino-ester (PBAEs) polymers taking advantage of their hydrolysable, cytocompatible, and cationic nature. We have shown cartilage uptake of the licofelone-PBAE conjugates increased 18 times and retention in tissues was prolonged by 37 times compared to the equivalent dose of the free licofelone. Additionally, these licofelone conjugates showed no detrimental effect on the chondrocyte viability. In conclusion, the cationic A87 and A16 PBAE polymers increased the amount of licofelone within the cartilage, which could potentially enhance the therapeutic effect and pharmacokinetic performance of this drug and other DMOADs clinically.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10758810 | PMC |
http://dx.doi.org/10.1039/d3ra04967a | DOI Listing |
RSC Adv
January 2024
School of Pharmacy and Pharmaceutical Sciences, Cardiff University Redwood Building, King Edward VII Avenue Cardiff Wales CF10 3NB UK
Disease-modifying osteoarthritis drugs (DMOADs) are a new therapeutic class for osteoarthritis (OA) prevention or inhibition of the disease development. Unfortunately, none of the DMOADs have been clinically approved due to their poor therapeutic performances in clinical trials. The joint environment has played a role in this process by limiting the amount of drug effectively delivered as well as the time that the drug stays within the joint space.
View Article and Find Full Text PDFArch Pharm (Weinheim)
August 2011
College of Chemistry and Chemical Engineering, Hunan University, Changsha, P.R. China.
Five licofelone ([2,2-dimethyl-6-(4-chlorophenyl)-7-phenyl-2,3-dihydro-1H-pyrrolizin-5-yl]acetic acid) nitric oxide donor conjugates were developed by a parallel synthesis approach. The biological screening revealed that compounds with a propyl (6b), butyl (6c), or octyl (6d) chain between licofelone and the nitric oxide donor exhibited high antiproliferative potency at MCF-7 and MDA-MB-231 breast cancer as well as at HT-29 colon cancer cells. Moreover, 6b-d possessed at least 2-fold higher cytotoxicity at MDA-MB-231 cells than the parent compound licofelone although they showed less inhibitory activity at COX-1 and COX-2.
View Article and Find Full Text PDFMethods Find Exp Clin Pharmacol
March 2008
Prous Science, S.A.U., Barcelona, Spain.
Gateways to Clinical Trials are a guide to the most recent clinical trials in current literature and congresses. The data in the following tables has been retrieved from the Clinical Trials Knowledge Area of Prous Science Integrity, the drug discovery and development portal, http://integrity.prous.
View Article and Find Full Text PDFMethods Find Exp Clin Pharmacol
September 2004
Department of Pharmacology, Prous Science, Barcelona, Spain.
Gateways to Clinical Trials is a guide to the most recent clinical trials in current literature and congresses. The data in the following tables has been retrieved from the Clinical Trials Knowledge Area of Prous Science Integrity, the drug discovery and development portal, http://integrity.prous.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!