A Korean male with Kleefstra syndrome presented with micropenis.

Ann Pediatr Endocrinol Metab

Department of Pediatrics, School of Medicine, Kyungpook National University, Kyungpook National University Hospital, Daegu, Korea.

Published: December 2023

Kleefstra syndrome is caused by chromosome 9q34.3 deletion or heterozygous mutations in the euchromatin histone methyl transferase 1 (EHMT1) gene. It can be accompanied by intellectual disability, distinctive facial features, microcephaly, psychiatric disorders, hypotonia in childhood, hearing loss, heart defects, renal defects, epilepsy, speech anomalies, and obesity. Furthermore, genital anomalies are present in 30%-40% of male patients with Kleefstra syndrome, but their mechanisms have not been elucidated. Herein, we report a patient with Kleefstra syndrome presenting with micropenis. The patient was transferred to Kyungpook National University Children's Hospital for management of imperforate anus on the day of birth. Physical examination revealed micropenis with stretched penile length of 0.9 cm and facial dysmorphisms, including hypertelorism and anteverted nares. Chromosomal microarray revealed 424-kb heterozygous deletion at chromosome 9q34.3 (arr[hg19] 9q34.3 (140,234,315-140,659,055)x1). Among the involved main OMIM genes, phenotypically relevant genes were EHMT1 and NSMF. Endocrinological investigation showed low basal gonadotropin and testosterone levels. Anterior pituitary hormones and steroid hormone levels were in the normal range. Testicular function was normal based on human chorionic gonadotropin stimulation test. The patient experienced improvement in penile length growth with intramuscular testosterone enanthate injection initiated at 4 months of age. The purpose of this study is to describe the etiology, endocrine laboratory tests, and treatment of micropenis in Kleefstra syndrome.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10765021PMC
http://dx.doi.org/10.6065/apem.2244174.087DOI Listing

Publication Analysis

Top Keywords

kleefstra syndrome
20
micropenis kleefstra
8
chromosome 9q343
8
penile length
8
kleefstra
5
syndrome
5
korean male
4
male kleefstra
4
syndrome presented
4
micropenis
4

Similar Publications

Background: Kleefstra syndrome spectrum (KLEFS) is an autosomal dominant disorder that can lead to intellectual disability and autism spectrum disorders. KLEFS encompasses Kleefstra syndrome-1 (KLEFS1) and Kleefstra syndrome-2 (KLEFS2), with KLEFS1 accounting for more than 75%. However, limited information is available regarding KLEFS2.

View Article and Find Full Text PDF

EHMT2 as a Candidate Gene for an Autosomal Recessive Neurodevelopmental Syndrome.

Mol Neurobiol

December 2024

Department of Genetics and Evolutionary Biology, Institute of Biosciences, Human Genome and Stem Cell Research Center, University of Sao Paulo (USP), Sao Paulo, SP, Brazil.

Neurodevelopmental disorders (NDD) comprise clinical conditions with high genetic heterogeneity and a notable enrichment of genes involved in regulating chromatin structure and function. The EHMT1/2 epigenetic complex plays a crucial role in repression of gene transcription in a highly tissue- and temporal-specific manner. Mutations resulting in heterozygous loss-of-function (LoF) of EHMT1 are implicated in Kleefstra syndrome 1 (KS1).

View Article and Find Full Text PDF
Article Synopsis
  • Syndromic hearing loss (SHL) involves diverse genetic causes, with over 400 types identified, primarily following an autosomal dominant inheritance pattern.
  • A study analyzed 14 patients (ages 5-78 months) with various syndromes associated with SHL, discovering ten new genetic variants and confirming cases of well-known syndromes like Waardenburg and CHARGE.
  • Results suggest that combining neonatal hearing screenings with whole exome sequencing can effectively diagnose SHL early, highlighting the need for thorough monitoring of patients due to the complexity and variability of SHL symptoms.
View Article and Find Full Text PDF

Chromosomal inversions (INVs) are particularly challenging to detect due to their copy-number neutral state and association with repetitive regions. Inversions represent about 1/20 of all balanced structural chromosome aberrations and can lead to disease by gene disruption or altering regulatory regions of dosage-sensitive genes in Short-read genome sequencing (srGS) can only resolve ∼70% of cytogenetically visible inversions referred to clinical diagnostic laboratories, likely due to breakpoints in repetitive regions. Here, we study 12 inversions by long-read genome sequencing (lrGS) ( = 9) or srGS ( = 3) and resolve nine of them.

View Article and Find Full Text PDF

Objective: Kleefstra Syndrome (KS) is a rare genetic disorder caused by a deletion at 9q34.3. Studies showed that various heart defects are observed in 41-43% of patients and abnormal features on brain imaging in 58-63%.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!