The objective of this study was to characterize the effects of barley powdery mildew infection on wheat via the evolution and dynamics of chloroplasts and oxidative processes based on measurements of ultra-weak photon emission, parallel measurement of chlorophyll and ascorbic acid content, and molecular identification of the pathogen. The results showed the temporal dynamics of the evolution of ultra-weak photon emission signals that were evidently different for healthy and powdery mildew-infested wheat leaves. In the dark, the ceasing of delayed fluorescence signal made it possible to visualize the ultra-weak luminescence signal as well. Both delayed fluorescence and ultra-weak luminescence signals were characteristic of stress symptoms induced by powdery mildew that was further strengthened by the changes of chlorophyll and ascorbic acid content as typical stress analytical parameters. The presented data and parameterization enabled the identification of stress induction due to powdery mildew infestation in wheat, which should be investigated in detail in the future for fine-tuning our measurements, even by using other species and increasing the length of the measurement in order to increase its specificity. The changes in R values are suitable for monitoring the changes of plant stress response. The measurement of fluorescence and luminescence leads to a greater comprehension of the underlying photon emission-related processes, both in general and in the case of powdery mildew infestation.
Download full-text PDF |
Source |
---|
Plant Physiol Biochem
December 2024
Key Laboratory of Herbage Improvement and Grassland Agroecosystems, Lanzhou University, Lanzhou, 730020, China; Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture and Rural Affairs, Lanzhou, 730020, China; College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China; Engineering Research Center of Grassland Industry, Ministry of Education, Gansu Tech Innovation Centre of Western China Grassland Industry, China. Electronic address:
Arbuscular mycorrhizal (AM) fungi are widely existing soil microorganisms that form symbiotic relationships with most terrestrial plants. They are important for enhancing adversity resistance, including resistance to disease and water stresses. Nevertheless, it is not clear whether the benefits can be maintained in regulating the occurrence of plant diseases under drought, flooding stress and during water restoration.
View Article and Find Full Text PDFAppl Environ Microbiol
December 2024
State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai, People's Republic of China.
Mildiomycin is a representative peptidyl nucleoside antibiotic and was first isolated from , which has been used as an important biological agent to control powdery mildew in plants. Despite its importance, the biosynthetic pathways and regulatory mechanisms remain to be fully elucidated. In this study, we identified MilO as a positive pathway-specific regulator of mildiomycin biosynthesis in the heterologous host .
View Article and Find Full Text PDFBMC Plant Biol
December 2024
Key Laboratory of Grassland Ecosystem (Gansu Agricultural University), Ministry of Education, Lanzhou, 730070, China.
Background: Poa pratensis is a predominant cool-season turfgrass utilized in urban landscaping and ecological management. It is extensively employed in turf construction and in the regulation of ecological environments. However, it is susceptible to powdery mildew, a prevalent disease in humid regions.
View Article and Find Full Text PDFRev Argent Microbiol
December 2024
Facultad de Agronomía, Universidad Autónoma de Sinaloa, Culiacán, Sinaloa, Mexico; Universidad Autónoma de Occidente, Unidad Regional Culiacán, Culiacán, Sinaloa, Mexico. Electronic address:
Powdery mildew by Podosphaera xanthii (Castagne) is a major disease of greenhouse cucurbitaceous crops worldwide. Honey by honeybees has been reported as an antimicrobial for diseases in humans, animals, and plants. The aim of this study was to assess Apis mellifera honey against P.
View Article and Find Full Text PDFPlant Cell Environ
December 2024
College of horticulture, Nanjing Agricultural University, Nanjing, Jiangsu Province, China.
Powdery mildew (PM), caused by the biotrophic fungus Podospharea leucotricha, is a major threat to apple production. Plant-plant communication (PPC) is a crucial strategy for plant communities to enhance their defence against pathogens. The interconversion of methyl salicylate (MeSA) and salicylic acid (SA) is critical for PPC regulation, but the mechanism of MeSA-mediated PPC is not fully understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!