First Report of Leaf Spot on L. Caused by in China.

Plant Dis

plant protection, keyuan jing forth road, laoshan district, qingdao, shandong, China, 276000;

Published: January 2024

Cucumis melo L. is an important fruit with widespread consumption and commercial value. However, an undescribed disease affecting Hami melon (Cucumis melo L. var. Luhoutian) plants has consistently emerged in the Qihe region of Dezhou, Shandong Province of China since 2021. The disease can occur in both seedling and mature stages of Hami melon plants, and in severely diseased areas, the incidence rate was seen as 40 to 80%. During the seedling stage, the initial symptom is the appearance of water-soaked spots on the leaves. As the disease progresses, the leaves develop necrotic spots, and severely affected plants may exhibit stem rot and decay. In the mature stage, the disease primarily affects the leaves, causing necrotic spots and chlorosis. Under conditions of high humidity, black mold can be observed in the affected areas. Small pieces of symptomatic leaves from six different infected plants were collected and surface-sterilized with 5% NaClO for 3 min and 75% alcohol for 30 s for pathogen isolation (Wang et al., 2020). After rinsing with sterile water and blotted on sterile filter paper, the tissues were established on potato dextrose agar (PDA) media and incubated at 28℃ for 3-4 days. Pure isolates showed up at PDA were obtained through single-spore isolation. Colonies of all 16 isolates obtained by single-spore isolation had similar morphological characteristics on the PDA medium, the mycelium of the isolate appears dense and yellowish-brown on the PDA medium, and also secretes a brownish-red pigment on PDA. Under the opticalmicroscope, the perithecia from PDA media are subglobose spherical in shape, 80-100 μm in diameter, brownish by reflected light, wholly and densely hairy. Terminal hairs are very dense, greyish by reflected light, olive brown to reddish brown by transmitted light, thick-walled, arcuate, circinate, or spirally coiled at the apex. The ascospores within the perithecia are elliptical or droplet-shaped, initially colorless hyaline but later becoming subhyaline slightly gray, with dimensions of 7-9 μm × 4-5 μm. The morphological characteristics of the isolates were consistent with the description of Arcopilus aureus (Wang et.al. 2016). The internal transcribed spacer (ITS) region and β-tubulin genes of three randomly selected isolates were PCR amplified and sequenced using primers ITS4/ITS5 and Bt2a/Bt2b. The sequences of ITS and β-tubulin genes were submitted to NCBI with GenBank Accession No. OR539527 and OR640972, respectively. Based on morphological features and phylogenetic analysis, we concluded that the isolates belonged to A. aureus. Pathogenicity tests were conducted by placing agar plugs-containing fungal mycelia and agar blocks (control) on leaves of Hami melon seedlings (n=12) grown at 28°C with 60% humidity in a greenhouse, the assay was repeated three times. Symptoms appeared on the pathogen-inoculated leaves seven days after inoculation, whereas the control treatment remained symptomless. The pathogens were reisolated from diseased leaves and identified as A. aureus based on morphological, and molecular phylogenetic analysis, while Koch'sostulate was used to confirm its life mode. To the best of our knowledge, this is the first report of leaf spot caused by A. aureus on Cucumis melo L. in China.

Download full-text PDF

Source
http://dx.doi.org/10.1094/PDIS-11-23-2343-PDNDOI Listing

Publication Analysis

Top Keywords

cucumis melo
12
hami melon
12
report leaf
8
leaf spot
8
spot caused
8
necrotic spots
8
pda media
8
single-spore isolation
8
morphological characteristics
8
pda medium
8

Similar Publications

Plant metabolites known as cucurbitacins are known to impart an unpleasant bitter taste to edible fruits and even lead to severe health complications after the ingestion of relatively high amounts. In this study, an analytical method based on reversed phase liquid chromatography with combined detection by UV spectroscopy and atmospheric pressure chemical ionization high-resolution single/tandem mass spectrometry was applied to confirm the occurrence of four cucurbitacins (B, D, and R, and 23,24-dihydro cucurbitacin B) previously inferred in unexpectedly bitter-tasting fruits of an Italian variety (Scopatizzo) of unripe melon (Cucumis melo L.), known for the sweetness of its fruits.

View Article and Find Full Text PDF

The development of virus-resistant melon varieties not only poses challenges in balancing melon quality and resistance but also contributes to sustainable agricultural development. This research focuses on the exploration and application of various breeding techniques to enhance the virus resistance of melon varieties. Molecular markers associated with virus resistance genes have been identified and utilized in marker-assisted selection, enabling more efficient and targeted breeding.

View Article and Find Full Text PDF

Efficacy and Fate of RNA Interference Molecules in the Green Pea Aphid, Acyrthosiphon pisum.

Arch Insect Biochem Physiol

December 2024

Biological Control of Insects Research Laboratory, Research Park, USDA Agricultural Research Service, Columbia, Missouri, USA.

RNA interference (RNAi) is a promising technology for controlling insect pests of agriculture. This technology is mediated through the application of double-stranded RNAs (dsRNAs), which are processed within the insect cells into small interfering RNAs (siRNAs). These molecules then target and reduce the expression of the insect-specific genes that can kill or reduce the performance of the pest.

View Article and Find Full Text PDF

Six strains isolated from muskmelon and watermelon seedlings affected by stem rot and wilting in Serbia were reported as based on pathogenicity, LOPAT and cell wall fatty acid analyses. Recent bacterial isolates from cucurbit crops displaying -like symptoms in Alabama, USA, were identified as , prompting polyphasic re-evaluation of the Serbian strains. All six strains were found to cause severe disease in watermelon and squash seedlings under greenhouse conditions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!